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1 Introduction

Road-field models are systems of reaction-diffusion equations posed in different
spatial dimensions that have been introduced in the context of mathematical biology
in [4] in order to take into account the effect that a line of fast diffusion has on the
propagation in a half-plane, where a logistic-type reaction takes place.

More precisely, in [4], the authors consider a density v(x,y,?) that diffuses in the
upper half-plane {(x,y) € R?:y > 0}, called the field, with diffusion coefficient
d > 0, and reproduces according to a reaction term f(v), which is assumed to be
of Fisher-KPP type. On the so-called road, i.e. the boundary of the half-plane given
by {(x,y) € R? : y = 0}, another density u(x,t) diffuses with a possibly different
coefficient D > 0. In addition, a symmetric exchange between the road and the field
is considered, with a fraction vv that passes from the field to the road and a fraction
Uu that, vice-versa, passes from the road to the field (i, v being positive constants).
The corresponding reaction-diffusion system thus reads

vi—dAv=f(v) for (x,y,t) ERxRT x RT,
y — Dty = vv(x,07,1) — tu for (x,t1) e R x R, (1)
—dvy(x,07,t) = pu—vv(x,0%,r) for (x,r) e RxRY,

where R™ denotes the set of positive numbers, f : [0,00) — R is a Lipschitz function
which is differentiable in O and satisfies

f0)=f(1)=0, f>0in(0,1), f<0in(l,), f(s)<f'(0)sforse0,0),
(KPP)
and v(x,0%,1) := limy o v(x,y,1), vy (x,07,2) == limy o vy (x,y,7).
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The study of such a system is motivated by many situations in nature in which
some species or diseases spread faster along transportation networks (roads, rivers,
railways) than in the surrounding environment. Some specific examples are the
spreading of Vespa velutina in France (see [18]) or the early spread of HIV in the
Democratic Republic of Congo (see [12]).

In [4], it has been proved that there exists a quantity, which will be denoted by c;‘lp,
such that the solution of (1) starting from every continuous, compactly supported,
nonnegative pairs (ugp,vo) # (0,0) (throughout all this work we will consider such
a kind of initial data), converges to the unique positive steady-state of the system,

(ﬁ 1), with an asymptotic speed of propagation in the direction of the road equal

to c;p (observe that the subindex refers to the domain, which is a half-plane).
By asymptotic speed of propagation in the direction of the road, i.e. the x direc-
tion, we mean that c;;p satisfies the following two properties:

(i) forall ¢ > cp, limy o0 SUP|ys ¢ (u,v) = (0,0),
y=0
\4 —
(u,v) — (ﬁ7 1) ‘ =0.

Such properties say that, asymptotically in time, the solution of the parabolic prob-
lem is close to the positive steady-state inside bounded rectangles expanding in the x
direction at a speed smaller than cflp, while it is still close to (0,0) outside half-strips
which are unbounded in y and expand in the in the x direction at a speed larger than
Cho-

pThe main result of [4] is a precise geometrical characterization of ¢, | that, in par-
ticular, allows the authors to compare it with the speed of propagation of the Fisher-
KPP equation, i.e. the first equation in (1), which is given by ckpp := 21/df(0)
(see, e.g., [1, 13, 15]). The results of [4] are summarized in the following theorem.

(i) foralla > 0and c < cl’;p, 1imy o0 SUP || <r
0<y<a

Theorem 1 ([4]). Problem (1) admits an asymptotic speed of propagation in the x
direction which will be denoted by c;;p and satisfies:

(i) Chp = CKPP;
(ii) c}’;p > cgpp if and only if D > 2d;
(iii) Timpee ¢ (D) = oo,

In particular, these results establish that the speed of propagation can never be
smaller than the one of a homogeneous environment and that the road enhances
such a speed if and only if the diffusion D on it is larger than a certain threshold
given by 2d. Finally, this enhancement can be made arbitrarily large, by taking a
sufficiently large D.

Several works on road-field systems in a half-plane have been carried out after-
wards, with the goal of ascertaining more features of these models: in [5] additional
reaction and transport terms have been considered on the road, in [6] the asymptotic
speed of propagation in every direction has been determined, in [7] the existence
of traveling fronts has been investigated, in [2, 3] a nonlocal diffusion is taken into
account on the road, in [16, 17] nonlocal exchange terms and the relation between
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such a model and (1) are considered, in [14] u and v are allowed to depend pe-
riodically on x. A work that treats more general fields, which nonetheless are still
unbounded in every direction, is [11], where the case of asymptotically conic do-
mains is studied.

Other works devoted to road-field systems are related to fields with bounded
section in the y direction: in [19] the analogue of system (1) is studied in the case of
a strip-shaped field bounded by two roads with on which the diffusion is different
with respect to the one in the field. Such a situation reads

v—dAv=f(v) for (x,y,1) ER X (—R,R) x RT,
ur —Duyy = Vv(x,2RT 1) — u for (x,t1) e R x RT, )
+dvy(x, =R ,1) = pu—vv(x,£R¥ 1) for (x,r) e R xR*,

as well as the corresponding higher-dimensional case, while in [20] the model with a
strip bounded by only one road and homogeneous Dirichlet boundary conditions on
the other line is handled; finally, [8, 9, 10] deal with (2) in the case of ignition-type
reactions f.

The main result of [19] is the existence of an asymptotic speed of propagation,
denoted by c}; (in order to refer to the strip-shaped field), in the x direction, which
satisfies the properties summarized in the following theorem.

Theorem 2 ([19]). Problem (2) admits an asymptotic speed of propagation c¥ in
the x direction which, in addition, satisfies:

(l) lime C:t(R) = 0,‘
(ii) img e ¢y (R) = cpy
(iii) if D < 2d, the function R — c’(R) is continuous and increasing;
(iv) if D > 2d, the function R — c%(R) is continuous, and it is increasing for R €
(0,Ry) and decreasing for R € (Ryy,0), where Ry := ﬁD%d.
Moreover, in this case, there exist Ryy € (0,Ry) and Rk € (0,Rnp) such that
csi(R) > ¢y, if and only if R > Rup, and c3(R) > ckpp if and only if R > Rx.

Observe that property (i) in Theorem 2 is new with respect to problem (1), whose
speed of propagation is bounded away from 0, while (ii) can be seen as a continuous
dependence result of the speed of propagation with respect to the domain. Indeed,
one can think as one road in (2) to be fixed and, as R — oo, the other one lying further
and further; thus the latter looses its effects on the propagation, and we recover
problem (1).

Another similarity with Theorem 1 is the appearance of the same threshold 2d
for the diffusion D, but now related to the monotonicity of ¢}, with respect to the
size of the strip. As remarked in [19], the emergence of two types of monotonicity
can be explained by the lack of reaction on the road: if D < 2d it is more convenient
for the population to propagate in the interior of the strip, where both the reaction
and the diffusion are better than on the boundary; thus a larger strip makes the speed
of propagation larger. On the contrary, if D > 2d, on the one hand it is better to have
a larger field for the effect of the reaction to be greater, but, on the other hand, the
roads are now more convenient for the diffusion and, by increasing R, they become
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further apart. The competition between these effects, entails the existence of an
optimal distance of the roads which maximizes the speed of propagation.

By comparing Theorems 1 and 2, it is apparent that road-field systems may be-
have in an extremely different way according to whether the section of the field is
bounded or not. In this work we pursue this study by analyzing the combined effect
of a part of field with bounded width together with another one with unbounded
width, the two parts being separated by two roads where the diffusion is different
with respect to the one in the field.

With respect to (1) and (2), observe that we have to allow two-side exchanges;
for this reason, we first generalize the analysis of [4] to the system

vi—dAv=f(v) for (x,y,1) e Rx R\ {0} x R™,
Uy — Dty = v [v(x,0% 1) +v(x,07,1)] —2pu for (x,1) € Rx R,
Fdvy(x,0%,1) = pu—vv(x,0%,1) for (x,r) e R x RT,

3)

which corresponds to the case of a plane with a road of different diffusion. The
factor 2 in the second equation of (3) takes into account the fact that the density u
can pass to both sides of the surrounding field and gets positive contribution by the
density v both from the upper and the lower part. These exchanges are compensated
by the flux equations, i.e. the last relations in (3).

The main result that we provide for (3) is the following proposition, which, as it
will be apparent in the proof of Proposition 7, will essentially be based on the study
of the dependence of c;‘lp with respect to the exchange parameters ¢ and v.

Proposition 1. Problem (3) admits an asymptotic speed of propagation in the x di-
rection, denoted by CEI (referring to the planar field with one road), which satisfies:

(i) cpy = ckPP;
(ii) c;l > cgpp if and only if D > 2d. In such a case, cgl < cflp.

We observe that, the section of the field in (3) is unbounded as in (1) and there is
a lower bound on the asymptotic speed of propagation in the direction of the road,
given again by the classical Fisher-KPP speed. Indeed this is a general result which
always holds true when the field has at least one component which is unbounded in
every direction (see Lemma 1 below). Another point that (3) shares with (1) is that,
when the diffusion in the field dominates - i.e. when D < 2d -, the speed of propa-
gation coincides with the one of the homogeneous case, while, when the diffusion
on the road dominates, enhancement of the propagation speed takes place. Never-
theless, such an enhancement is reduced when the density is allowed to exchange
on the two sides with respect to the case of one-side exchanges given by (1). This
phenomenon is not a priori evident, since, despite the fact that in (3) the fraction of
the density that leaves the line of fast diffusion is twice as much as in (1), also the
contribution from the field doubles.
Finally, the last problem that we consider is
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vi—dAv=f(v) for (x,y,1) ERXR\{£R} xR,
u—Duyy =V [v(x, £RT 1) +v(x,£R",t)]—2pu for (x,t1) e Rx R,
Fdvy(x,R*,t) = pu—vv(x,R* 1) for (x,t) e R x RT,
Fdvy(x,—R*,t) = wu—vv(x,—R* 1) for (x,1) e R x R,

“)
which describes a plane with rwo roads where the diffusion is different with respect
to the one in the field, and for which the main result is the following.

Theorem 3. Problem (4) admits an asymptotic speed of propagation in the x direc-
tion, denoted by c;‘)z (referring to the planar case with two roads), which satisfies:

(i) ¢5p = CKPP;
(ii) ng > ckpp If and only if D > 2d. In such a case, R — C;;Z(R) is continuous,
decreasing and satisfies

llgﬁ}cgz(R) = Chp» }ggc;z (R) =cp1- &)

In particular, cl’gz (R) > 6;1 for all R;
(iii) if D > 2d, there exists R* € (Rg,Ryp), where Rk and Ry, are the ones of Theo-

rem 2, such that ¢, (R) > ¢ (R) if and only if R < R".

Once again, we see that an unbounded field in every direction makes the asymptotic
speed of propagation bounded from below by ckpp, with the usual threshold of the
diffusion on the road in order to have enhancement. The main novelty here is the
fact that, contrarily to the case of a strip bounded by two roads of fast diffusion,
when such enhancing roads are placed in the whole plane and the distance between
them increases, the speed of propagation always decreases. This means that the den-
sities take advantage of the reaction in the field, no matter how it is distributed, and
separating the roads of fast diffusion reduces their effect on the enhancement. In ad-
dition, observe that, when the roads enhance the speed of propagation, having two of
them gives a better enhancement than in the case with only one road, as it is natural
to expect. Finally, relations (5) can be seen once more as a continuous dependence
of the speed of propagation with respect to the domain: when the strip between the
roads shrinks, the effect inside it becomes negligible, as if the exchanges where one-
sided; while, if the distance between the roads tends to infinity, considering one of
them to be fixed makes the effect of the other one disappear.

The results of Theorems 1-3 are summarized in Figure 1.

This chapter is distributed as follows: in Section 2 we recall some preliminary
results, from basic features of road-field systems up to the general way to construct
the asymptotic speed of propagation; in Section 3 we consider the problems with one
road, i.e. (1) and (3), we recall the proof of Theorem 1 given in [4], and we prove
Proposition 1; finally, in Section 4, we consider the remaining problems, those with
two roads, recalling the proof of Theorem 2 given in [19] and providing the one of
Theorem 3, which is the main new result of this chapter.
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Fig. 1 Graphs of the asymptotic speed of propagation in the x direction for problems (1), (2), (3)
and (4), considered as a function of R: (left) the case D < 2d and (right) the case D > 2d.

2 Preliminary results: comparison principles, long-time behavior
and existence of the asymptotic speed of propagation

In this section we recall some preliminary results that have been proved in [4] for
system (1) and in [19] for system (2), and that can be easily adapted to the cases of
systems (3) and (4). Without further mention, we stress that such results are valid for
all the aforementioned systems, with the natural modifications due to the different
domains in which they are posed. We begin with the following parabolic strong
comparison principle.

Proposition 2 ([4]). Let (u,v) and (u,v) be, respectively, a subsolution bounded
from above and a supersolution bounded from below of (1) such that (u,v) < (4,V)
at t = 0, component-wise in their respective domains. Then, (u,v) < (u,v) for all
t >0, or there exists T > 0 such that (u,v) = (u,v) forallt <T.

Then, we recall the well-posedness of the system, starting from nonnegative,
bounded, continuous initial data (uniqueness, in particular, follows from Proposition
2).

Proposition 3 ([4]). Let (uo,vo) be nonnegative, bounded and continuous. Then,
there is a unique solution (u,v) satisfying lim; o (u,v) = (uo, vo).

The following is a comparison principle for a class of generalized subsolutions,
that will be repeatedly used for the characterization of the asymptotic speed of prop-
agation. Once again, we state it for system (1), although it is also valid, with the
obvious modifications, for all the other systems.

Proposition 4 ([4]). Let (u1,v1) be a subsolution of (1) bounded from above, and
such that u; and vi vanish, respectively, on the boundary of an open set E of
R x (0,400), and of an open set F of {y > 0} x (0,4o0) (in the relative topolo-
gies). Assume in addition that

v <0  inENn{u >0}\F,
up <0  inFn{v;>0}\E.
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Then, setting

max{u;,0} inE, max{v;,0} inF,
u:= vi=
- 0 otherwise, - 0 otherwise,
for any supersolution (u,v) of (1) bounded from below and such that (u,v) < (u,v)
att =0, we have (u,v) < (@,7) forall t > 0.

Next we present the result for the long-time behavior of the solutions. Although
it is valid for all the systems (see [4, Section 4] for systems (1) and (3), and [19,
Section 3] for system (2)), we state it for system (4) and give a sketch of the proof,
which is slightly different from the other cases, since it requires the combination of
the pieces of field with bounded and unbounded section.

Theorem 4. Let (u,v) the solution of (4) with a nonnegative, continuous compactly
supported initial datum (up,vo) # (0,0). Then

Tim (u,v) = (;1> . ©)

Proof. We proceed in several steps.
Step 1. The pair (ﬁK K ) , where K is a sufficiently large constant, is a stationary

supersolution of of (4) which lies above (ug,vg). Thus, the solution of (4) with this
supersolution as an initial datum converges to a stationary solution of (4), denoted
by (U1, V1), which, thanks to Proposition 2, satisfies

limsup(u,v) < (U, V1). (7

t—roo

In addition (Uj, V1) is x independent and symmetric with respect to reflections about
the x axis {y = 0}. Indeed, the solution of the parabolic problem and its limit as
t — 4o inherit the desired symmetries from the initial datum, from the fact that the
Cauchy problems associated to (4) have a unique solution (thanks to Proposition 3),
and that (4) is invariant by translations in x and by reflections about {y = 0}.

Step 2. By taking, for o, 3, € positive and small,

v = gcos(ax) cos <ﬁ (y_R_ - 27;))

for x € (—%, %) and y € (R—i— IL,LR+1+ %), together with its reflection about

{y =0} and extending to 0 elsewhere, we obtain a stationary generalized subsolu-
tion of (4) which lies below (u,v), the latter considered at t = 1. Proposition 4 thus
gives the existence of a stationary solution (U, V») of (4) which is symmetric about
the x axis and such that

(Up,Va) < ligglf(u,v). (8)
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Finally, a sliding argument as the one of [5, Lemma 2.3] allows us to obtain the
independence on x of (Uz, V2).
Step 3. We claim that the unique nonnegative, bounded stationary solution of (4)

which is x independent and symmetric about {y = 0} is (%, 1). Thus, (7) and (8)
allow us to obtain (6).

To prove the claim, consider a stationary solution (U,V (y)) with the mentioned
symmetries. Thanks to the second equation in (4) for y = R, it satisfies

0=v(V(R")+V(R"))—2uU ©)
and, thanks to the first one and the symmetry about {y = 0},

{ =av'(y)=f(V(y)), ye€(O,R),
V/(0) = 0.

We prove that V(0) = 1, which, thanks to (KPP), will entail that V = 1 and, as
a consequence from (9), U = % If, by contradiction, V(0) € (0,1), then (KPP)
implies that V is concave and decreasing in (0,R). By combining this with (9) and
with the third equations in (4), we obtain

0>dV'(R™)=uU—VvV(R")=VV(R")—pU =dV'(R"),

thus V would be decreasing and concave for all y > R, which is impossible, since it
is positive. Similarly, we can exclude that V(0) > 1, otherwise V would be convex
and increasing for all y # R, thus unbounded. O

The following result, which relies on the comparison principles given in Propo-
sitions 2 and 4, will be used, together with the constructions performed in Sections
3 and 4, to obtain the existence of the asymptotic speed of propagation. Once again,
we state it for system (4) even if it is valid, with the obvious due modifications, for
all the road-field systems considered in this work. Since it is one of the core results,
we also provide a sketch of the proof (for the details we refer to [5, 19]).

Proposition 5. Assume that there exists ¢* > 0 such that:

(i) for every ¢ > c* there exist supersolutions of the linearized system around (0,0)

vi—dAv=f'(0)v for (x,y,1) ERxR\{£+R} xR™,
u—Duye =V [v(x, =R, 1)+v(x,£R™,1)]—2pu for (x,t) e Rx R,
Fdvy(x,RE,t) = pu—vv(x,R* 1) for (x,t) ERxRT,
Fdvy(x,—R*,t) = pu—vv(x,—R* 1) for (x,t) ERx R,
(10)
of the form
(7,7) = 405 (1,6(7)), (1

where a. is a positive constant, and ¢ () is positive in the field;
(ii) for all ¢ < c¢*, ¢ ~ c* there exist arbitrarily small, nonnegative generalized
stationary subsolutions (u,v) of
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vi—dAvEcve = f(v) for (x,,1) ERXR\{£R} xR,
uy— Dty Fcu,=v[v(x,=R" 1) +v(x,£Rt)]-2uu for (x,t) € R x R,
Fdvy(x,RE,t) = pu—vv(x,R* 1) for (x,t) ERx RT,
Fdvy(x,—R*,t) = pu—vv(x,—R* 1) for (x,t) ERx RT,

(12)
with (u,v) having compact support and being symmetric about {y = 0}.!

Then c* is the asymptotic speed of propagation of problem (4).

Proof. Take k > 0 sufficiently large so that (i, V), where (%,V) is the supersolution
given by assumption (i) for ¢ = ¢* with the “—” sign, lies above (ug,vp). Observe
that, since system (10) is linear, k(%,V) is still a supersolution of (10) and thus,
thanks to (KPP), it is a supersolution to (4).

Consider ¢ > ¢* and x > ct; then, thanks to Proposition 2,

(u,v) < ke 01 (v)) < ke (1,9(y)) = 0

as t — oo, proving the first part of the definition of asymptotic speed of propagation
for the propagation to the right. For the propagation to the left we reason similarly,
by taking the supersolution in (i) with the “+” sign.

On the other hand, using the subsolutions given by assumption (ii), one can
prove, following the same lines of Theorem 4, that, for ¢ < ¢*, with ¢ arbitrarily
close to c¢*,

. v
tlbrg(u(xict,t),v(x:l:ct,y,t)) = (u, 1) ,

and then the second part of the definition of asymptotic speed of propagation follows
by applying [5, Lemma 4.1] (see also [19, Lemma 4.4] for a proof of it). O

3 Characterization of the asymptotic speed of propagation for
problems with one road

This section is devoted to the construction and a geometric characterization of the
asymptotic speed of propagation for the road-field systems considered in the intro-
duction having one road of different diffusion, i.e. problems (1) and (3).

The following lemma, whose proof is based on [4, Lemma 6.2], constructs sub-
solutions with the characteristics of assumption (ii) of Proposition 5 (with (12) ad-
equately replaced in each case by the corresponding parabolic problem with addi-
tional transport terms =£cvy, £cu,), when D < 2d, 0 < ¢ < ckpp, and the field has
at least one component whose section is unbounded in y, i.e. for systems (1),(3)
and (4). Proposition 5 will thus entail that the speed of propagation for these three
systems is larger than or equal to ckpp.

! This symmetry condition is not required - and even meaningless - when the domain is the upper
half-plane.
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Lemma 1. Let D < 2d and 0 < ¢ < cgpp. Then, there exist arbitrarily small, non-
negative generalized stationary subsolutions of (12) (and the analogous versions
corresponding to systems (1) and (3)) with compact support and symmetric about
{y = 0} (when the domain has this symmetry too).

Proof. We look for subsolutions of the form

vzew(x>cos(ﬁ (y_R_1_2”>) (13)

for 3, € positive and small, y € (R +1L,R+1+ %) , and y(x) nonnegative with com-
pact support to be determined. We also take the reflection of v about {y = 0} and
extend to O elsewhere in the field.

Observe that, if v is small enough (i.e., if € is small enough), solves

—dAv+cvy = (f'(0)—8)v (14)

for & € (0,/7(0)), 6 ~ 0, and its support is contained in the field, then, by taking
u = 0, we obtain a subsolution to (12). For (13) to solve (14), y(x) has to satisfy

dy" Fey' +(f/(0) - 8§ —dp*)y =0,

thus, since 0 < ¢ < ckpp, for 8,8 ~ 0 y(x) is given by e**, where A € C\ R is a
root of the associated characteristic polynomial. In order to obtain a real solution,
we take the real part of y and, to have compact support in x, we take only one
oscillation and extend to O elsewhere. 0O

The following proposition, which summarizes the content of [4, Sections 5-6],
gives a geometrical characterization of Cﬁp and, combined with Proposition 5, allows
us to prove Theorem 1. We recall the elements of its proof, since they will be used
also in the rest of this chapter.

Proposition 6 ([4]). Problem (1) admits an asymptotic speed of propagation c;p in
the x direction which, for D < 2d, satisfies C;;p = ckpp, While, for D > 2d, it satisfies
cﬁp > cxpp and is the smallest value of ¢ for which the curves

— /=2, —4d2B2 2 4 4u-Ddp
o (eB) = c \/c cgpp — 4d*B o ()= O RVl
d,hp ? : 2d ) D,hp ) .

15)

have real intersections.

Proof. Let us begin with the case D < 2d. Thanks to Lemma 1, in order to apply
Proposition 5, it is sufficient to construct, for every ¢ > cxpp supersolutions of the
linearization of (1) around (0,0) of the form (11). To this end, we take ¢ (y) = ye P,
with B > 0, ¥ > 0 and, by plugging into the linearized system, we obtain that such
a candidate is a solution (respectively, a supersolution) if and only if the following
algebraic system, involving the unknowns «, f3, v and the parameter c,
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ca—da?—dp? = f'(0) ca—da’—dB* = f'(0)
ca—Da’>=vy—u «— { ca—Da*= ;ﬂjg (16)
dBy=n—vy Y=via

is satisfied (respectively, if and only if it is satisfied with the equality signs replaced
by “2’7).
The first equation in (16) describes, for ¢ > ckpp, a circle X;(c) in the (B, )

plane with center (0, %) and radius 7“22;12“"’. Observe that X;(c) degenerates to
its center as ¢ | ckpp.

When D < 2d and ¢ > ckpp, by taking (o, 3,7) = (ﬁ,o, %), which amounts to
consider the center of X; in the (f, @) plane, the relations in (16) are satisfied with
“>”_and we have constructed the desired supersolution.

To treat the case D > 2d, we explicitly write the curve given by the second rela-
tion of (16) as a function of 8 and the parameter c, obtaining the curve (xg‘hp(c7 B)
defined in (15) - we only consider the branch with the “+” in front of the square
root, since this will be enough for the construction, as it will be apparent from the
following discussion. We observe that such a curve intersects the a-axis in the point

(£,0); thus, since D > 2d, the circle Xy arises, for ¢ = ckpp, above Ochhp. In addi-

tion, the lower part of the circle, which is parameterized by the function a(;hp(c, B),
introduced in (15) as well, is decreasing with respect to ¢ and converges to 0 as
¢ — oo, while Oczihp(c, B) is increasing in ¢ and tends to e as ¢ — co. Therefore,
since these curves are regular, there exists a least value of ¢, denoted by c}’;p, which
is greater than cgpp and for which they intersect for the first time, being tangent, and
they intersect strictly for every greater c.

To conclude the proof, we show, thanks to Proposition 5, that ¢} is the asymp-
totic speed of propagation. By construction, there are solutions of (16) for every
c> cflp, providing solutions of the linearized system.

To construct compactly supported subsolutions for ¢ < c;‘lp, c~ c;jp, consider
the truncation of problem (1) obtained by considering 0 < y < L and imposing
v(x,L,t) = 0. Reasoning as above, i.e. studying the corresponding system for «t, 3,7,
it is possible to construct solutions of the linearized truncated system with penaliza-
tion, i.e. with f'(0) replaced by f/(0) — &, of type e=*(*¢) (1, ysinh(B (L —y))) for
¢ greater than or equal to a certain value ¢*(L,d) < cl’;p. Moreover, for ¢ smaller than
c*(L,d), arbitrarily close to i, it is possible to show by using Rouché’s theorem (see
[4, Lemma 6.1]) that the system for o, 3,7 has complex solutions, giving complex
solutions of the linearized truncated system. Taking the real part of such solutions,
which oscillates in x, considering only one oscillation - as in the proof of Lemma 1 -,
extending to 0 and taking small multiples, gives a compactly supported subsolution
to the original problem. Since limz, ) (e 0) ¢*(L,8) = cf,,, this procedure allows
us to construct subsolutions satisfying assumption (ii) of Proposition 5 for ¢ < c;“p,
arbitrarily close to it, which concludes the proof. O

This geometric characterization allows us to prove almost immediately Theorem
1, for which we recall once more the elements of the proof given in [4].
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Proof (of Theorem 1). The existence of c;p and parts (i) and (ii) are contained in
Proposition 6.

Passing to (iii), we observe that if, by contradiction, cl’;p(D) was bounded, the
second curve in (15) would converge locally uniformly to 0 as D — oo, thus it would
not have any intersection with the first one, against the characterization of c;jp(D)
given in Proposition 6. 0O

This completes the review of the results for the half-plane with one road and we
pass now to construct the speed of propagation for the case of a plane with one road
(3), which is the content of the following proposition. Then, we give the proof of
Proposition 1.

Proposition 7. Problem (3) admits an asymptotic speed of propagation c;, in the
x direction which, for D < 2d, satisfies 0;1 = ckpp, While, for D > 2d, it satisfies
C;SI > cxpp and is the smallest value of ¢ for which the curves

c— /2 —ckpp — 4d? B2 . 7C—|—\/cz+4%lil?gﬁ an

aLZPI(C7B):: 2d ) OtD_’pl(c,ﬁ):— 2D

have real intersections.

Proof. The construction follows the same lines of the one of Proposition 6 and
relies on Proposition 5. On the one hand, one looks for supersolutions of type u =
eFolaxet) 3 — }/ei“("im_ﬁy fory>0andv = Yei“("i“)’“ﬁ-" for y < 0, and obtains
the algebraic system

ca—da®—dB* = f'(0) ca—da? —dp* = f'(0)
ca—Do?=2vy—2u <= { ca—Do?= }Tddﬁﬁ (13)
dBy=n—vy Y= viap

which leads, when D > 2d, to the search for real intersections between the curves
an.

On the other hand, the construction of compactly supported subsolutions for
c< ¢, e~ C;*)l» follows, in the case D < 2d, from Lemma 1 and, in the case
D > 2d, by truncating in y and using Rouché’s theorem to obtain complex solutions,
exactly as indicated in the proof of Proposition 6. O

Proof (of Proposition 1). The existence of c;;l, its lower bound and the threshold for
enhancement with respect to ckpp have already been proved in Proposition 7.

It only remains to show that cgl < c}’;p when D > 2d, and, for this, it is sufficient to
observe that &, ,; (¢, B) in (17) coincides with o, (c, B) in (15), while Ocl;p1 (¢,B)
is obtained from (fohp(c,B ) by replacing p with 2. As a consequence, thanks
to the geometric characterization given in Propositions 6 and 7, if we explicitly
point out the dependence of cl’;p and c;‘,I with respect to the parameter u, we have
that, always for D > 2d, ¢y, (1) = ¢,,(2t), and, in order to get the conclusion, it
is sufficient to show that u — cﬁp(u) is decreasing. To this end, observe that the
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function p — o} hp(c, B, 1) is strictly increasing and, by construction, the curves

ag,hp(c;p(u),ﬁ,u) and ot (cf, (1), B) are tangent for every pt. Thus, if p < iz,
U ~ MUz, the curves ocg’hp(c, B, 12) and a;hp(c, B) are strictly secant for ¢ = cj, (11)
and, due to the monotonicities in ¢, this parameter has to be decreased in order to
obtain the value for which they intersect for the first time, which, thanks again to
Proposition 6, provides us with ¢ (12). O

4 Characterization of the asymptotic speed of propagation for
problems with two roads

In this section we construct the asymptotic speed of propagation for the two remain-
ing problems (2) and (4), those with two roads. We preliminarily observe that such
problems are symmetric with respect to reflections about {y = 0}. For this reason,
we will construct the super- and subsolutions needed to apply Proposition 5 with
the same symmetry, i.e. we will look for functions defined only on {y > 0} and
satisfying vy (0") = 0, and then will consider their even extension on {y < 0}.

We begin with problem (2) for a strip-shaped field {y € (—R,R)}. In this case, the
construction of the speed of propagation is more complicated than in the cases pre-
sented in Section 3, since the eigenvalue problem —¢” (y) = A ¢ (y) has two types of
positive eigenfunctions in (—R, R) which satisfy ¢’(0)=0: cos(v/Ay) for A € (0,5%).
and cosh(v/—A4y) for A < 0. This entails that we have to consider two types of super-
solutions of the form (11): the first type with ¥; = ye=*(<) cos(By), 0 < B < X,
and the second one ¥, = ye=*(“*¢") cosh(By). The geometric characterization of the
asymptotic speed of propagation that we obtain in this case is the following one, and
the proof we provide summarizes the results of [19, Section 4].

Proposition 8 ([19]). Problem (2) admits an asymptotic speed of propagation c¥; in
the x direction which is the smallest value of the parameter c for which either the
curves,

4uDdpsin(BR)
ct/c2— CK + 4d2ﬁ2 Ci \/Cz vcos(BR) jilg blH(ﬁR)
+ .
O st = 2d ) aD st,1 - 2D
(19)
or
4pDdp sinh(BR)
Cc— \/6‘2—6’ P_4d2B2 4 C+\/ vcosh (BR)+dp sinh(BR)
Qi 2d v Opsio® 2D
(20)

have real mtersecnons in the first quadrant of the (B, a) plane (in (19) we consider
0< ﬁ < [3 < 35, Where ﬁ is the first zero of the denominator inside the square root
of O‘D si1):
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If intersection first occurs between the curves (19), then c¥ is said to be of type
1, and will be denoted by c:t‘l, otherwise, if intersection first occurs between the
curves in (20), then we say that ¢} is of type 2 and we denote it by c; ,.

Proof. The proof follows similar lines as the ones of Section 3: to construct the
above-mentioned supersolutions of type 1, one has to find solutions of the following
system

ca—da?+dp? = f'(0) co—do’+dp*=f10)
co—Da = vycos(BR) —p = { co- Do = Sy df s BR)
—dBysin(BR) = u — vycos(BR) y= m

B @)
(observe that, for 0 < 8 < 8, vy > 0); while for supersolutions of type 2, one reduces
to system

co—da? —dp* = f(0) ca—da’ —dfy* = gg(o)hmm

— sin
ca—Da? = vycosh(BR) —p <= ¢ ca—Da? = ncosh(%RHdﬁ Smh(BR)
dBysinh(BR) = u — vycosh(BR) Y = Vosh(BR) dFSHR (PR

(22)
System (21) leads to find intersections between the curves in (19), while (22) be-
tween those in (20).

In order to conclude, assume that c}; is of type 1. Then, it is possible to reason
as in the proof of Proposition 5 to show that for ¢ < ¢, ¢ ~ ¢, system (21) admits
complex solutions which can be used to construct the desired compactly supported
subsolutions. The same can be done by using system (22) when c}; is of type 2. We
remark that no truncation is needed here to obtain a compact support in y, since y is

already bounded. 0O

Remark 1. By studying the dependence on c of the curves (19) and (20), one can
observe that in both cases they have real intersections for sufficiently large c, thus
both provide us with supersolutions of the problem. As a consequence, one might
think that two different values for c; can be obtained, one for each pair of curves.
Nonetheless, the analysis of [19] (see in particular Section 4 and Proposition 4.1)
guarantees that the construction of compactly supported subsolutions only works in
one of the two cases, entailing in particular that the definition of the type of ¢}, given
in Proposition 8 is well posed.

Proof (of Theorem 2). The existence follows from Proposition 8. Moreover, it is
possible to show (see [19, Section 4]) that

if D<2d, cy=cy, forallR>0, (23)

* 1 forR e (0,Ry),
1fD>2d, C:t{cu’l or 6( ) M) (24)

Cqp for R > Ry,

where we use the notation introduced in Proposition 8. We are now ready to prove
the qualitative properties of cj;.
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®

(i)

(iii)

(iv)

For R ~ 0, (23) and (24) give that ¢}, = C:t,l' In addition, as R | 0, the curve

o, converges to the horizontal lines & = 0 and & = ¢/D. Thus, for any
fixed c, there are always intersections between such a curve and (x;t_st_l, which

connects, in the first quadrant of the (f, @) plane, the points ( @ , O) and
(e0,00). Proposition 8 therefore gives that limg o ¢ (R) = 0.

We distinguish the cases D < 2d and D > 2d. In the former one, thanks to
(23), we only have to consider system (21), and we observe that, when ¢ =
ckpp, if we take (@, B,y) = (CISZP ,0, %) the first and third relation of such
a system hold true, while the second one holds true with the “>" sign. Thus,
ci(R) < ckpp for all R and limsupg_,..,c§(R) < ckpp = ¢y, On the other hand,
observe that the construction of compactly supported subsolutions of Lemma
1 can be carried out for sufficiently large R, entailing that liminfz_,. ¢} (R) >
ckpp, Which concludes the proof in this case.

When D > 2d, according to (24), c; is of type 2 for sufficiently large R. Now,
the convergence of ¢} (R) to cflp as R — oo follows from the geometric charac-

terizations given in Propositions 6 and 8, observing that oci{st’2 converges, as
R — oo, to ag,hp locally uniformly in 3.

Once again, if D <2d, (23) guarantees that ¢}, = c;‘“ for all R. One then proves
that the curves ag.st.l shrink continuously as R increases, while the curves
Otjfst‘] do not depend on R, entailing that cj; ; is continuous and increasing.

To prove that, if D > 2d, ¢},(R) is increasing for R € (0,Ry), we use (24) and
reason as in the previous point. Similarly, we use (24) and the fact that o} ,
increases, with respect to R, to obtain that cg = cg; , is decreasing for R > Ry.
The continuity of the function R s ¢, is obvious for R # Ry, since the curves
in (19) and (20) depend continuously on R. For R = Ry, the conclusion is not
direct, since a transition of type occurs. Nevertheless, one proves that a[}'fsm

and O‘B,st,l do not play a role for R = Ry, and observes that, for f = 0, the
remaining curves in (19) and those in (20) match in a differentiable way, which
allows us to obtain the continuity of ¢ (R) also for R = Ry.

The existence and properties of Ry, and Rx now follow directly form the con-
tinuity and monotonicity properties of ¢, together with properties (i) and (ii)
of Theorem 2 and (ii) of Theorem 1. O

Finally, we pass to the case of the plane with two roads (4), for which, as already
remarked, Lemma 1 entails that 6;2 > CKPP-

Differently from the case of the strip, here it is enough to consider only one type
of supersolution. Indeed, the unique positive eigenfunctions of —¢” (y) = A¢(y) for
[y| > R are the ones of exponential type. The differential equation in the field being
the same for |y| < R, this forces to take ¥(x,y,) = y1e=**) cosh(By) in (—R,R)
(recall that, by symmetry, we consider functions satisfying vy (x,0",7) = 0), exclud-
ing in this way the cosine. Moreover, in analogy with the constructions of Section
3, we take 7i(x, 1) = e *0F) and (x, y,1) = et @) -BOR) for y > R. As usual,
the constants «, 3,71, %> will be sought to be positive.
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After these preliminaries, we show in the following proposition that these super-
solutions suffice for the construction and characterization of the speed of propaga-
tion for this problem.

Proposition 9. Problem (4) admits an asymptotic speed of propagation in the x di-

rection cz‘)z, which, for D < 2d, satisfies C;z = cgpp, while, for D > 2d, it satisfies

0;2 > cxpp and is the smallest value of ¢ for which the curves

c— /2 —ckhpp —4d> B2
a;pz(caﬁ) = 2d 9

(25)

d df sinh(BR)
c+ \/ c¢?+4uD (v+§ﬁ + S cosn(BRI+ap sinh(ﬁR))
2D

ag,pz(c, B):=

have real intersections.

Proof. By plugging the above described candidate to supersolution into the lin-
earization, the system that we obtain in this case reads

co—da*—dp* = f'(0)
cot — Do = v(y; cosh(BR) +p) —2u

dByisinh(BR) =t — vy cosh(BR)  ~
dBp=u—-vp
cou—da*—dp? = f'(0)
— ca—Do? =~ kafﬁ o vcoshlv(lgg)src};[glii];)h(ﬁR) (26)
" = Veosh(BR) +dBsinh(BR)
Y= vfidﬁ'

As in Section 3, if D < 2d, (o, B,71,%) = (53,0, 5. %) provides us with superso-
lutions to (26) for ¢ > ckpp. Thus, Proposition 5 and Lemma 1 allow us to conclude
that C;Sz = ckpp 1n this case. When D > 2d, instead, intersections between the curves
in (25) provide us with solutions to (26) and, as a consequence, supersolutions to
(4). Thanks to the monotonicity with respect to c, intersections between such curves
exist for ¢ greater than or equal to a certain value (greater than cxpp) for which, as
usual, the curves are tangent, and which will turn out to be cl’;z.

Indeed, in order to apply Proposition 5, we only have to obtain compactly sup-
ported subsolutions in the case D > 2d for ¢ < c;‘)z, cr C;z~ To do so, we proceed as
in the proof of Proposition 6: we consider the truncation at y = L, with L > R, by
imposing v(x,L,7) = 0, and, by using Rouché’s theorem, we prove that, for ¢ < C;2’
cr~ CSZ’ the associated linearized system with penalization admits complex solu-
tions which allow us to obtain subsolutions whose support is compact also in the x

variable. 0O

Proof (of Theorem 3). The existence part, (i) and the first part of (ii) are contained
in Proposition 9. In (ii), it remains to prove the behavior with respect to R in the
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case D > 2d: the continuity and monotonicity follow since the map R oc;)r 2 is
continuous and increasing, while ad_,p2 does not depend on R. Thus, since the curves

in (25) are tangent for ¢ = c;‘ﬂ (R),if R > R, R’ ~ R, they are strictly secant and ¢

has to be reduced in order to obtain the tangency situation.

The curve aj, , converges locally uniformly to o, as R |0, and to aj ; as
R — eo. This proves the limits in (5). The fact that cj, (R) > cp; follows from the
monotonicity of ¢y, (R) and the second limit in (5).

Passing to part (iii), by the continuity of ¢} (R) and the properties of Ry, we have
c&i(Rnp) = chp > cpo(Rhp), where the last inequality follows from (ii) here. On the
other hand, the properties of Rk, together with (ii) of Proposition 1 and (ii) here,
give ¢ (Rx) = ckpp < c[*,] < C;z (Rk). The existence of R* and its properties now
follow by the continuity and monotonicities of ¢ (R) and ¢, (R). O
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