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Abstract. We consider nonlocal variational problems in Lp, like those that appear in peridynamics, where the func-

tional object of the study is given by a double integral. It is known that convexity of the integrand implies the lower

semicontinuity of the functional in the weak topology of Lp. If the integrand is not convex, a usual approach is to

compute the relaxation, which is the lower semicontinuous envelope in the weak topology. In this paper we compute

such a relaxation for a scalar problem with a double-well integrand. The relaxation is non-trivial, and, contrary to the

local case, it cannot be represented as a double integral, as the original problem. Nonetheless, we show that, as for the

local case, the relaxation can be expressed in terms of the energy of a suitable truncation of the considered function.

1. Introduction

The object of this paper are functionals I of the form

(1) I(u) = −
∫

Ω

−
∫

Ω

w(x, x′, u(x), u(x′)) dx′ dx.

where Ω ⊂ Rn is a bounded open subset, u : Ω→ R is in some Lebesgue space Lp with 1 < p <∞, and the integrand

w : Ω × Ω × R × R → R satisfies some natural regularity, coercivity and growth conditions. The symbol −
∫

indicates

the integral divided by the measure of Ω; the use of the average integral is just a convenient normalization. This

kind of functionals represents an energy and appears in many contexts in the modelling of some nonlocal processes,

such as peridynamics [37], phase transitions [2], pattern formation [21], image processing [23] and diffusion [4]. Our

main motivation comes from peridynamics: in such a context, Ω represents the reference configuration of a solid which

undergoes a deformation u, and I measures the energy of that deformation. The nonlocal behavior comes from the

fact that the energy density takes into account the interaction between all points of the body.

A usual procedure for showing the existence of minimizers of the energy functional I is the direct method of the

Calculus of variations, whose main ingredients are coercivity and lower semicontinuity. The natural topology in this

context is the weak topology in Lp, since it is in this case where the coercivity implies the compactness. The works

[20, 13, 10, 33, 11] deal precisely with the issue of existence of minimizers, and, as a part of the study, they analyze

necessary and sufficient conditions for the the lower semicontinuity of I in the weak topology of Lp. One of such

necessary and sufficient conditions involves a nonlocal property of convexity which is difficult to understand, even

for n = 1; see [29, 12, 19]. Nevertheless, when the integrand w = w(x, x′, y, y′) does not depend on (x, x′), and the

dependence on (y, y′) is through the difference y − y′, i.e., when, given a function f : R→ R, the energy functional is

(2) I(u) = −
∫

Ω

−
∫

Ω

f(u(x)− u(x′)) dx′ dx,

such a nonlocal property of convexity is equivalent to convexity of f : see, e.g., [11, Sect. 7].

Thus, if f is not convex, the functional I is not lower semicontinuous in the weak topology of Lp. A usual approach

to tackle this obstacle is to consider the relaxation I∗, which consists in finding the lower semicontinuous envelope of I.

In the classical local context of nonlinear elasticity, understanding the relaxation is capital to study the microstructure

of the material [8], although in this nonlocal context the relaxation has a slightly different interpretation in terms of

microstructure, as will be seen in Section 10.

Relaxation for nonlocal functionals similar to I but depending on ∇u was analyzed in [30, 29, 12, 19]. These works

study necessary and sufficient conditions for the weak lower semicontinuity, as well as abstract relaxation functionals,

but they do not compute the lower semicontinuous envelope of the considered functional. The article [11], on the other

hand, analyzes the relaxation of the functional I in terms of Young measures, which are, roughly speaking, families
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of probability measures parametrized by x ∈ Ω that capture the information of the possible oscillations of sequences

converging weakly in Lp(Ω).

In this paper we compute the relaxation I∗ of I for a particular, but paradigmatic, case of non-convex f ; namely,

(3) f(t) = −2αt2 + t4, α > 0,

one of the most used double-well potentials for modelling phase transitions. For such an integrand, we give an explicit

formula for the relaxation which allows us, among other results, to solve the question, in the negative, of the integral

representation for the relaxed functional, i.e., we show that there does not exist any function g such that I∗(u) can

be written in the form

(4) −
∫

Ω

−
∫

Ω

g(u(x)− u(x′)) dxdx′.

Such a result was suggested in [33, 11] but its proof was left open. Moreover, even though for this f the functional

I(u) only depends on the second and fourth moments of u (see Section 6), its relaxation I∗ cannot be written as a

function depending on those moments.

The main steps of the proof are the following:

i) We start with the result of Bellido and Mora-Corral [11], which states that the relaxation of I in the space of

Young measures is the functional Ī defined in the space of Young measures in Ω× R as

Ī(ν) = −
∫

Ω×R
−
∫

Ω×R
f(y − y′) dν(x′, y′) dν(x, y),

and show (see Proposition 3) that I∗(u) can be characterized as the minimum of Ī(ν) among Young measures ν

with barycenter u. This result is totally analogous to classical results in local problems.

ii) In Propositions 6 and 7, where we consider a general integrand w, we obtain (first and second order) optimality

conditions satisfied by any measure ν that solves the minimization problem of Step i). To do so, we adapt the

method of Pedregal [32], who established optimality conditions for a problem defined in the set of Young measures

with no restrictions. Since the original problem in [32] contains ∇u, the analysis was limited to n = 1. Here, we

obtain optimality conditions for any n ≥ 1, and, in addition, we incorporate the restriction that the barycenter

of ν has to be u.

Later, an analysis of our optimality conditions for the specific f given in (3) allows us to conclude (see Steps

1–3 in the proof of Theorem 9) that the optimal Young measure has the form

νx =

{
δu(x) for x ∈ Ω1,
v2(x)−u(x)
v2(x)−v1(x)δv1(x) + u(x)−v1(x)

v2(x)−v1(x)δv2(x) for x ∈ Ω2.

for some disjoint sets Ω1,Ω2 with union Ω and some functions v1, v2.

iii) We do variations of the v1 and v2 and conclude that v1 + v2 = 0 and v1 and v2 are constant (see Steps 4–5 in the

proof of Theorem 9). Moreover, v2
1 = v2

2 = bu where bu is the only solution b > 0 to the equation

b = α− 3−
∫

Ω

max{u2, b}

(see Section 7).

iv) We do variations of Ω1 and conclude that Ω1 is the set where u2 ≥ bu (see Step 6 in the proof of Theorem 9).

Thus, ν is completely determined, I∗(u) = Ī(ν) and, in fact,

(5) I∗(u) = I
(

max
{
|u|,
√

max{bu, 0}
})

(see Theorem 11 and Corollary 12).

It is worth noticing that, even though Young measures are extensively used in the characterization of I∗, our final

formula for I∗ does not involve Young measures, as can be seen from (5).

The impossibility of expressing I∗ as a functional of the style (4) represents a remarkable difference with the local

case. Nevertheless, there are also some similitudes, since, as formula (5) shows and will be explained in Section 10,

both local and nonlocal relaxations can be obtained through a suitable truncation of u.
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We mention two relevant works related to ours: [26, 25]. In [26], lower semicontinuity and relaxation for nonlocal

problems are also studied, but in the context of L∞. In such a work the functional involves the essential supremum

and the authors show that the relaxed functional has the same structure as the original one (with another supremand),

a remarkable difference with our negative representation result (see Proposition 16). A follow-up of [26] is [25], where

they show that, in general, the relaxation in Lp of functionals I of the style of (1) is not given by a double integral.

They also show instances where the relaxation does preserve the structure of a double integral. Their approach is very

different from ours and is based on the study of nonlocal inclusions.

Although the relaxation is determined here for the specific f given in (3), we believe that the same techniques

can be used to compute the relaxation for I in (2) when f is a C2 even function with a typical profile of a double-well

potential. However, the relaxation of I for an integrand depending explicitly on (x, x′) seems to be substantially more

difficult, as does the vectorial case (when u takes values in Rd).
This paper is organized as follows. Section 2 presents some definitions about Young measures in Lp. In Section

3 we review the results of [11], which shows the formula for Ī, the relaxation of I in the space of Young measures.

In Section 4 we prove an abstract formula for I∗ in terms of Ī, namely, I∗(u) is the minimum of Ī(ν) among the

Young measures ν with barycenter u. In the same section we also review the necessary and sufficient conditions for I

to be lower semicontinuous in the weak topology of Lp. In Section 5 we adapt the method of [32] to find optimality

conditions for the Young measures that minimize Ī, for general n ≥ 1 and under the constraint that their barycenter is

u. The core of the paper are Sections 6 and 7. For the particular case of (2) when f is given by (3), we give in Section

6 a complete description of the Young measures with given barycenter that minimize Ī. Using this result, in Section 7

we compute I∗. Section 8 illustrates the relaxation result of Section 7 to compute I∗(u) for particular examples of u,

while in Section 9 we use such examples to show that I∗ is not given by a functional of the form (4) or by a function

depending only on the second and fourth moments of u. Finally, in Section 10, we compare our relaxation formula

with that of the local case, and give an interpretation in terms of the microstructure of the deformed material.

2. Young measures in Lp

In this section we briefly recall the definitions and results concerning Young measures that are needed in the

paper; for the proofs and general expositions, we refer the reader to [38, 39, 31, 5, 7, 6, 22, 11].

We start with some general notation of measure theory. Throughout the paper, Ω denotes a non-empty bounded

open set of Rn, n ≥ 1; from Section 3 it will be assume to be connected (so, a domain) and with a Lipschitz boundary.

We will use both Lebesgue and Borel measurability: Lebesgue measurability will be in a Lebesgue measurable

subset of Rn, while Borel measurability will be in R. The Lebesgue measure in Rn will be denoted by Ln; the

Lebesgue measure of a measurable E ⊂ Rn is denoted by Ln(E) or |E|. When we just write measurable, it means

Lebesgue measurable, while, when we say B-measurable, it means Borel measurable. Likewise, Ln ⊗ B-measurable

means measurable in Ω×R with respect to the product measure. In fact, the paper deals with functions defined either

in Ω×Ω×R×R (in which case we assume L2n⊗B2-measurability) or in R (in which case we assume B-measurability).

In the notation of the introduction, these two cases correspond to the integrands w = w(x, x′, y, y′) and w = f(y−y′).
Given a measurable set E and 1 ≤ p <∞, the Lebesgue space Lp(E) is defined in the usual way. Weak convergence

in Lp is denoted by ⇀.

Given a ∈ R, the Dirac delta at a is denoted by δa, while the average integral −
∫
E

denotes the integral in E divided

by Ln(E).

Given E ⊂ Rn, C(E) is the set of continuous functions in E. Its subset of bounded functions is denoted by Cb(E),

and is endowed with the supremum norm ‖·‖∞. In addition, C0(E) is its subset of functions u such that for every

ε > 0 there exists a compact K ⊂ E such that |u(x)| < ε for all x ∈ E \K.

A Young measure in Ω× R is a measure ν in Ω× R, equipped with the Ln ⊗ B-sigma algebra, such that for any

measurable E ⊂ Ω,

ν(E × R) = Ln(E).

We denote by Y(Ω) the set of Young measures in Ω× R.
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Thanks to the procedure of disintegration (or slicing ; see, e.g., [6, Th. 4.2.4]), any ν ∈ Y(Ω) can be identified

with a family (νx)x∈Ω of probability measures on R such that for all f ∈ C0(Ω× R), the map

Ω 3 x 7→
∫
R
f(x, y) dνx(y)

is measurable and ∫
Ω×R

f(x, y) dν(x, y) =

∫
Ω

(∫
R
f(x, y) dνx(y)

)
dx.

Thus, we write ν = (νx)x∈Ω. In the sequel, we will use both approaches.

Any measurable function u : Ω→ R can be identified with the Young measure νu = (νux )x∈Ω given by νux = δu(x)

for all x ∈ Ω, i.e., ∫
Ω×R

ϕ(x, y) dνu(x, y) =

∫
Ω

ϕ(x, u(x)) dx

for all ϕ ∈ C0(Ω× R). With a small abuse of notation, we write u ∈ Y(Ω).

Given p ≥ 1, we denote by Yp(Ω) the set of ν ∈ Y(Ω) such that∫
Ω×R
|y|p dν(x, y) <∞.

As a consequence of Hölder’s inequality, Yp(Ω) ⊂ Yq(Ω) if 1 ≤ q ≤ p.

3. Relaxation in the set of Young measures

In this section we recall some results of [11] that will be used later. Given a function w : Ω×Ω×R×R→ R, it is

said to be symmetric if w(x, x′, y, y′) = w(x′, x, y′, y) for a.e. x, x′ ∈ Ω and all y, y′ ∈ R. We say that w is Carathéodory

if it is L2n ⊗ B2-measurable and for a.e. x, x′ ∈ Ω, the function w(x, x′, ·, ·) is continuous.

We fix p > 1 and define the functional I in Lp(Ω) as in (1). In this work, no boundary conditions are imposed,

although a slight variant of the proofs can easily deal with them; in any case, boundary conditions in a nonlocal

context are different from the usual Dirichlet or Neumann conditions in a local setting; see, e.g., [11]. We assume that

the problem is invariant under translations, i.e., I(u) = I(u + a) for all u ∈ Lp(Ω) and a ∈ R. This is the case, for

example, if w depends on y and y′ only through the difference y − y′, as we will assume from Section 6. Thus, we

can assume, without loss of generality, that
∫

Ω
u = 0. We denote by Lp0(Ω) the set of u ∈ Lp(Ω) such that

∫
Ω
u = 0.

Accordingly, our problem is to calculate the relaxation I∗ of (1) in the weak topology of Lp0(Ω).

Given ν ∈ Yp(Ω) and i ∈ N with i ≤ p, we define its ith moment Mi(ν) as the measurable function Mi(ν) : Ω→ R

Mi(ν)(x) :=

∫
R
yi dνx(y).

Jensen’s (or Hölder’s) inequality shows at once that Mi(ν) ∈ L
p
i (Ω).

The first result that we recall from [11] gives the relaxation of I in Yp(Ω). The precise statement is the following,

where we denote by χB(0,δ) the characteristic function of the ball B(0, δ) of Rn.

Theorem 1 ([11], Th. 6.3). Let Ω be a Lipschitz domain of Rn, fix δ > 0 and let p > 1. Assume w : Ω×Ω×R×R→ R
is symmetric, Carathéodory and there exist a1, a2 ∈ L1(Ω× Ω) and c > 0 such that

(6) a1(x, x′) +
1

c
χB(0,δ)(x− x′) |y − y′|

p ≤ |w(x, x′, y, y′)| ≤ a2(x, x′) + c
(
|y|p + |y′|p

)
,

for a.e. x, x′ ∈ Ω and all y, y′ ∈ R. Let Yp,0(Ω) be the set of ν ∈ Yp(Ω) whose first moment u lies in Lp0(Ω). Define

I1, Ī : Yp(Ω)→ R ∪ {∞} as

I1(ν) :=

{
I(u) if ν =

(
δu(x)

)
x∈Ω

for some u ∈ Lp0(Ω),

∞ otherwise,

Ī(ν) :=


∫

Ω×R

∫
Ω×R

w(x, x′, y, y′) dν(x, y) dν(x′, y′) if ν ∈ Yp,0(Ω),

∞ otherwise.

Then, the lower semicontinuous envelope of I1 with respect to the narrow topology is Ī.
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We point out that the term |y′|p in the right-hand side of (6) was mistakenly missed out in [11]. Theorem

1 mentions the narrow topology for Young measures: we refer to [11] or general references on Young measures

[38, 39, 31, 5, 7, 6, 22] for its definition, because it is not essential here; indeed, it is only used in the proof of

Proposition 3 below.

A second key result that we will need is the following nonlocal Poincaré inequality. It has been proved, with

different versions, in [14], [15, Th. 1], [34, Th. 1.1], [3, Prop. 4.1], [1, Cor. 3.4] and [24, Cor. 4.6]. The following

formulation is taken from [10, Prop. 4.2] and [11, Prop. 4.3].

Proposition 2 ([11], Prop. 4.3). Let Ω be a Lipschitz domain of Rn, fix δ > 0 and let p ≥ 1. Then there exists λ > 0

such that for all u ∈ Lp0(Ω), ∫
Ω

|u(x)|p dx ≤ λ
∫

Ω

∫
Ω∩B(x,δ)

|u(x)− u(x′)|p dx′ dx.

4. Relaxation in Lp

As mentioned in the previous sections, we denote by I∗ the lower semicontinuous envelope of I in the weak

topology of Lp0(Ω), i.e., I∗ is the greatest lower semicontinuous function in Lp0(Ω) that is below I:

I∗ := sup
{
J : J : Lp0(Ω)→ R is l.s.c. in the weak topology and J ≤ I

}
.

Condition (6) and Proposition 2 imply at once that, for any u ∈ L1
0(Ω), the quantity I(u) is well defined and finite

if and only if u ∈ Lp(Ω). In fact, given a subset A ⊂ Lp0(Ω), we have that A is bounded in Lp(Ω) if and only if

{I(u) : u ∈ A} is bounded. As a consequence, in order to calculate I∗ it suffices to consider bounded sets in Lp0(Ω). As

bounded sets in the weak topology are metrizable (see, e.g., [16, Th. 3.29]), the topology in those sets A is metrizable.

In particular (see, e.g., [6, Th. 11.1.1] or [22, Prop. 3.12]), for any u ∈ Lp0(Ω),

I∗(u) = inf

{
lim inf
j→∞

I(uj) : {uj}j∈N ⊂ Lp0(Ω) and uj ⇀ u as j →∞
}

and, moreover, we have that a functional I∗ is the relaxation of I if and only if:

(i) For any sequence {uj}j∈N in Lp0(Ω) such that uj ⇀ u as j →∞ for some u ∈ Lp0(Ω), we have

I∗(u) ≤ lim inf
j→∞

I(uj).

(ii) For any u ∈ Lp0(Ω) there exists a sequence {uj}j∈N in Lp0(Ω) such that uj ⇀ u as j →∞ and

I∗(u) = lim
j→∞

I(uj).

Although Γ-convergence is not used in this paper, we mention that the relaxation I∗ is nothing but the Γ-limit

of the constant sequence I.

Given u ∈ Lp0(Ω), we denote by Ypu(Ω) the set of ν ∈ Yp(Ω) such that M1(ν) = u.

We are now able to give the result that establishes the relation between I∗ and the functional Ī introduced in

Theorem 1; it shows a total analogy with the local case (see, e.g., [22, Th. 8.20]) and will be the starting point for our

analysis. As pointed out above, its proof is the only place in the article where narrow convergence of Young measures

is actually used and we send the reader to any of [38, 39, 31, 5, 7, 6, 22, 11] for its definition and properties.

Proposition 3. Let w : Ω×Ω×R×R→ R satisfy the same assumptions of Theorem 1. Then, for every u ∈ Lp0(Ω),

I∗(u) = min
{
Ī(ν) : ν ∈ Ypu(Ω)

}
.

Proof. Let u ∈ Lp0(Ω) and denote by mu the infimum of
{
Ī(ν) : ν ∈ Ypu(Ω)

}
. We first show that this infimum is

attained, so it is in fact a minimum. Condition (6) shows that mu ∈ R. Let {νj}j∈N be a sequence in Ypu(Ω) such that

Ī(νj)→ mu as j →∞. Then, {Ī(νj)}j∈N is bounded, and, by (6) and Proposition 2, we have that

sup
j∈N

∫
Ω×R
|y|p dνj(x, y) <∞.
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According to the criterion of tightness for Young measures (see, e.g., [11, Th. 3.3]), there exists ν ∈ Y(Ω) such that,

for a subsequence, {νj}j∈N converges narrowly to ν. By semicontinuity (see, e.g., [11, Prop. 3.8]),

Ī(ν) ≤ lim inf
j→∞

Ī(νj) = mu.

In particular, ν ∈ Yp(Ω). Let h ∈ L∞(Ω). We apply the semicontinuity result for Young measures (see, e.g., [6, Prop.

4.3.3]) to the function ϕ : Ω× R→ R defined by ϕ(x, y) = h(x) y. We thus obtain∫
Ω

h(x)M1(ν)(x) dx =

∫
Ω

h(x)

∫
R
y dνx(y) dx ≤ lim inf

j→∞

∫
Ω

h(x)

∫
R
y dνjx(y) dx =

∫
Ω

h(x)u(x) dx.

When we apply the same result to −ϕ, we obtain the opposite inequality, so we obtain∫
Ω

h(x)M1(ν)(x) dx =

∫
Ω

h(x)u(x) dx.

As this is true for every h ∈ L∞(Ω), we conclude that M1(ν) = u a.e. in Ω. Hence, ν ∈ Ypu(Ω) and ν is a minimizer

of Ī in Ypu(Ω).

We set J(u) := min
{
Ī(ν) : ν ∈ Ypu(Ω)

}
and show that J satisfies conditions (i)–(ii) above. This will imply that

J = I∗.

Let {uj}j∈N be a sequence converging weakly in Lp0(Ω) to some u ∈ Lp0(Ω). By the criterion of compactness for

Young measures (see, e.g., [31, Th. 6.2], [6, Rk. 4.3.3] or [22, Th. 8.2]), there exists ν ∈ Yp(Ω) such that {uj}j∈N
converges narrowly to ν in Yp(Ω). As before, M1(ν) = u, so ν ∈ Ypu(Ω). By the semicontinuity of Ī (see [11, Prop.

5.9]),

J(u) ≤ Ī(ν) ≤ lim inf
j→∞

Ī(uj) = lim inf
j→∞

I(uj).

This proves condition (i).

To prove condition (ii), given u ∈ Lp0(Ω) we consider a ν ∈ Ypu(Ω) such that J(u) = Ī(ν). As Ī is the relaxation of

I and I1 in Yp,0 (see Theorem 1 and the discussion at the beginning of this section), there exists a sequence {uj}j∈N
in Lp0(Ω) such that uj ⇀ ν in the narrow topology of Yp(Ω) and I(uj) → Ī(ν) = J(u) as j → ∞. Moreover, uj ⇀ u

in Lp(Ω) (see, e.g., [31, Th. 6.8], [22, Th. 8.11] or [11, Lemma 3.13]). This proves condition (ii) for J and shows that

J = I∗. �

Obviously, I∗ = I if and only if I is lower semicontinuous in the weak topology of Lp0(Ω). Conditions for this

lower semicontinuity were analyzed in [20, 13, 11]. In those papers it is proved, as a particular case, the following

result, where we denote by w− the negative part of w.

Proposition 4 ([11], Cor. 5.6). Let p > 1. Let w : Ω×Ω×R×R→ R be Carathéodory and symmetric. Assume that

there exist a ∈ L1(Ω× Ω), a continuous strictly increasing g : [0,∞)→ [0,∞) with

lim
t→∞

g(t)

tp
= 0

and a constant c > 0 such that

(7) |w(x, x′, y, y′)| ≤ a(x, x′) + c
(
|y|p + |y′|p

)
, for a.e. x, x′ ∈ Ω and all y, y′ ∈ R

and

(8) w−(x, x′, y, y′) ≤ a(x, x′) + g (|y|) + g (|y′|) , for a.e. x, x′ ∈ Ω and all y, y′ ∈ R.

Then, the functional I of (1) is lower semicontinuous in the weak topology of Lp0(Ω) if and only if for a.e. x ∈ Ω and

every v ∈ Lp0(Ω), the function

y 7→
∫

Ω

w(x, x′, y, v(x′)) dx′

is convex.

We point out that in [11] the terms |y′|p in (7) and g (|y′|) in (8) were mistakenly missed out.

When the function w only depends on y − y′, Proposition 4 takes the following form.
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Proposition 5. Let p > 1. Let f : R → R be continuous. Assume that there exist a ∈ L1(Ω × Ω), a continuous

strictly increasing g : [0,∞)→ [0,∞) with

lim
t→∞

g(t)

tp
= 0

and a constant c > 0 such that

|f(t)| ≤ c (1 + |t|p) , for all t ∈ R
and

f−(t) ≤ g (|t|) , for all t ∈ R.
Then, the functional I of (2) is lower semicontinuous in the weak topology of Lp0(Ω) if and only if f is convex.

5. Variations of Young measures

Proposition 3 in the previous section reduces the problem of relaxation of I∗ in Lp0(Ω) to the problem of finding

a minimizer ν of Ī in Ypu(Ω). In this section we compute (first and second order) optimality conditions on ν. For

this we follow Pedregal [32], who developed a method of ascertaining optimality conditions for Young measures. To

be precise, we adapt his method to deal with the constraint M1(ν) = u, and, since our functional does not involve

gradients, we are able to treat the general case n ≥ 1.

Apart from [32], there are several works in which optimality conditions for Young measures are derived; see, e.g.,

[35] for a very general approach, [36] for an analogue of the classical Weierstrass condition, [27] in the context of

micromagnetics, [18, 9] for applications of the optimality condition to a numerical approximation.

We fix a function w : Ω× Ω× R× R→ R such that:

i) w is symmetric,

ii) w is L2n ⊗ B2-measurable and for a.e. x, x′ ∈ Ω, the function w(x, x′, ·, ·) is of class C2,

iii) there exist a symmetric a ∈ L1(Ω× Ω) and c > 0 such that

|w(x, x′, y, y′)|+ |∂1w(x, x′, y, y′)|+
∣∣∂2

11w(x, x′, y, y′)
∣∣+
∣∣∂2

12w(x, x′, y, y′)
∣∣ ≤ a(x, x′) + c

(
|y|p + |y′|p

)
,

for a.e. x, x′ ∈ Ω and all y, y′ ∈ R.

We have denoted by ∂1 the partial derivative of w with respect to y, and by ∂2 the partial derivative with respect to

y′. Analogous notation is employed for the second derivatives. The symmetry and the C2 regularity imply that, for

a.e. x, x′ ∈ Ω and all y, y′ ∈ R,

(9) ∂1w(x, x′, y, y′) = ∂2w(x′, x, y′, y), ∂2
12w(x, x′, y, y′) = ∂2

12w(x′, x, y′, y).

Let ν ∈ Ypu(Ω), fix R > 0 and, for a.e. x ∈ Ω and νx-a.e. y ∈ R, let µyx ∈ P(R) satisfy

µyx (R \ [−R,R]) = 0,

i.e., µyx has compact support. Define µx(y, z) = µyx(z) ⊗ νx(y), meaning that µx is the positive, linear and bounded

operator in Cb(R× R) defined by

〈µx, ψ〉 =

∫
R

∫
R
ψ(y, z) dµyx(z) dνx(y) ∀ψ ∈ Cb(R× R),

so µx is a positive Borel measure in R × R and, in fact, a probability measure. For each t ∈ R and a.e. x ∈ Ω define

the probability measure νtx in R as

〈νtx, ϕ〉 =

∫
R×R

ϕ(y + tz) dµx(y, z), ∀ϕ ∈ Cb(R).

Note that ν0 = ν. It is immediate to see that νt belongs to Y(Ω). Moreover,∫
Ω×R
|y|p dνt(x, y) =

∫
Ω

∫
R×R
|y + tz|p dµx(y, z) dx ≤ 2p−1

∫
Ω

∫
R

∫
R

(|y|p + |t|p|z|p) dµyx(z) dνx(y) dx

= 2p−1

[∫
Ω×R
|y|p dν(x, y) + |t|p

∫
Ω×R

∫ R

−R
|z|p dµyx(z) dν(x, y)

]
<∞,
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so νt ∈ Yp(Ω). Finally, if ∫
R
M1(µyx) dνx(y) = 0

for a.e. x ∈ Ω then

M1(νtx) =

∫
R
y dνtx(y) =

∫
R

∫
R

(y + tz) dµyx(z) dνx(y) = u(x) + t

∫
R
M1(µyx) dνx(y) = u(x)

for a.e. x ∈ Ω, so νt ∈ Ypu(Ω).

Define g : R → R as g(t) = Ī(νt). We show that g admits two derivatives by checking that differentiation under

the integral sign is allowed. Thanks to iii) and the fact νt ∈ Yp(Ω), for each t ∈ R,

−
∫

Ω×R
−
∫

Ω×R
|w(x, x′, y, y′)|dνt(x′, y′) dνt(x, y) ≤ −

∫
Ω

−
∫

Ω

a(x, x′) dx′ dx+ 2c−
∫

Ω×R
|y|p dνt(x, y) <∞.

Now,

g(t) = −
∫

Ω

−
∫

Ω

∫
R×R

∫
R×R

w(x, x′, y + tz, y′ + tz′) dµx′(y′, z′) dµx(y, z) dx′ dx

and, for all t ∈ R, for a.e. x, x′ ∈ Ω, for µx-a.e. (y, z) ∈ R× R and µx′ -a.e. (y′, z′) ∈ R× R, using (9),

d

dt
w(x, x′, y + tz, y′ + tz′) = ∂1w(x, x′, y + tz, y′ + tz′)z + ∂1w(x′, x, y′ + tz′, y + tz)z′

so we obtain that, for all t ∈ [−1, 1],∣∣∣∣ d

dt
w(x, x′, y + tz, y′ + tz′)

∣∣∣∣ ≤ [a(x, x′) + c
(
|y + tz|p + |y′ + tz′|p

)]
[|z|+ |z′|]

≤
[
a(x, x′) + 2p−1c

(
|y|p + |z|p + |y′|p + |z′|p

)]
[|z|+ |z′|] ,

and the integral −
∫

Ω
−
∫

Ω

∫
R×R

∫
R×R of the last term in the previous expression with respect to dµx′(y′, z′) dµx(y, z) dx′ dx

can be bounded by

2R−
∫

Ω

−
∫

Ω

a(x, x′) dx′ dx+ 2p+1Rc

[
−
∫

Ω×R
|y|p dν(x, y) +Rp

]
<∞.

Similarly, using (9) again,

d2

dt2
w(x, x′, y + tz, y′ + tz′) = ∂2

11w(x, x′, y + tz, y′ + tz′)z2

+ 2∂2
12w(x, x′, y + tz, y′ + tz′)zz′ + ∂2

11w(x′, x, y′ + tz′, y + tz)(z′)2,

so, for all t ∈ [−1, 1],∣∣∣∣ d2

dt2
w(x, x′, y + tz, y′ + tz′)

∣∣∣∣ ≤ 4a(x, x′) + 2p−1c
(
|y|p + |z|p + |y′|p + |z′|p

)
(|z|+ |z′|)2

,

and the integral −
∫

Ω
−
∫

Ω

∫
R×R

∫
R×R of the last term in the previous expression with respect to dµx′(y′, z′) dµx(y, z) dx′ dx

is again bounded.

Therefore, we can differentiate under the integral sign and obtain

g′(0) = −
∫

Ω

−
∫

Ω

∫
R×R

∫
R×R

∂1w(x, x′, y, y′)z dµx′(y′, z′) dµx(y, z) dx′ dx

+−
∫

Ω

−
∫

Ω

∫
R×R

∫
R×R

∂1w(x′, x, y′, y)z′ dµx′(y′, z′) dµx(y, z) dx′ dx

= 2−
∫

Ω

−
∫

Ω

∫
R×R

∫
R×R

∂1w(x, x′, y, y′)z dµx′(y′, z′) dµx(y, z) dx′ dx

= 2−
∫

Ω×R
−
∫

Ω×R
∂1w(x, x′, y, y′)M1(µyx) dν(x′, y′) dν(x, y).
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Similarly,

g′′(0) = 2−
∫

Ω

−
∫

Ω

∫
R×R

∫
R×R

∂2
11w(x, x′, y, y′)z2 dµx′(y′, z′) dµx(y, z) dx′ dx

+ 2−
∫

Ω

−
∫

Ω

∫
R×R

∫
R×R

∂2
12w(x, x′, y, y′)zz′ dµx′(y′, z′) dµx(y, z) dx′ dx

= 2−
∫

Ω×R
−
∫

Ω×R
∂2

11w(x, x′, y, y′)M2(µyx) dν(x′, y′) dν(x, y)

+ 2−
∫

Ω×R
−
∫

Ω×R
∂2

12w(x, x′, y, y′)M1(µyx)M1(µy
′

x′) dν(x′, y′) dν(x, y).

In conclusion, if ν is a minimizer of Ī in Ypu(Ω) then g′(0) = 0 and g′′(0) ≥ 0. We summarize the above findings

in the following proposition.

Proposition 6. Let p ≥ 1 and assume w : Ω × Ω × R × R → R satisfies conditions i)–iii). Let u ∈ Lp0(Ω) and let ν

be a minimizer of Ī in Ypu(Ω). For a.e. x ∈ Ω and νx-a.e. y ∈ R, let µyx ∈ P(R) have compact support and satisfy∫
R
M1(µyx) dνx(y) = 0

for a.e. x ∈ Ω. Then

(10) −
∫

Ω×R
−
∫

Ω×R
∂1w(x, x′, y, y′)M1(µyx) dν(x′, y′) dν(x, y) = 0

and

−
∫

Ω×R
−
∫

Ω×R
∂2

11w(x, x′, y, y′)M2(µyx) dν(x′, y′) dν(x, y)

+−
∫

Ω×R
−
∫

Ω×R
∂2

12w(x, x′, y, y′)M1(µyx)M1(µy
′

x′) dν(x′, y′) dν(x, y) ≥ 0.

(11)

The conclusion of Proposition 6 is too abstract and heavily depends on the choice of µyx. We will see in the

following result how to manage it and, in particular, how to remove the dependence on µyx.

Proposition 7. Let p ≥ 1 and assume w : Ω × Ω × R × R → R satisfies conditions i)–iii). Let u ∈ Lp0(Ω) and let ν

be a minimizer of Ī in Ypu(Ω). Define H1 : Ω× R→ R and H2 : Ω× R→ R as

H1(x, y) := −
∫

Ω×R
∂1w(x, x′, y, y′) dν(x′, y′),

H2(x, y) := −
∫

Ω×R
∂2

11w(x, x′, y, y′) dν(x′, y′).

Then for a.e. x ∈ Ω,

(12) supp νx ⊂
{
y ∈ R : H1(x, y) =

∫
R
H1(x, y′) dνx(y′), H2(x, y) ≥ 0

}
.

Moreover,

−
∫

Ω×R
−
∫

Ω×R
∂2

11w(x, x′, y, y′)γ(x, y)2 dν(x′, y′) dν(x, y)

+−
∫

Ω×R
−
∫

Ω×R
∂2

12w(x, x′, y, y′)γ(x, y)γ(x′, y′) dν(x′, y′) dν(x, y) ≥ 0

(13)

for any γ ∈ Cb(Ω× R) with

(14)

∫
R
γ(x, y) dνx(y) = 0 for all x ∈ Ω.
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Proof. Given η ∈ Cb(Ω) and γ ∈ Cb(Ω× R), define γ̄ ∈ Cb(Ω) and γ1 ∈ Cb(Ω× R) as

γ̄(x) =

∫
R
γ(x, y) dνx(y), γ1(x, y) = η(x) [γ(x, y)− γ̄(x)] .

For each x ∈ Ω and y ∈ R, take µyx = δγ1(x,y). It satisfies M1(µyx) = γ1(x, y), the measure µyx has compact support

and, for all x ∈ Ω, ∫
R
M1(µyx) dνx(y) =

∫
R
γ1(x, y) dνx(y) = η(x) [γ̄(x)− γ̄(x)] = 0.

Therefore, by (10) of Proposition 6,

0 = −
∫

Ω×R
−
∫

Ω×R
∂1w(x, x′, y, y′) γ1(x, y) dν(x′, y′) dν(x, y) = −

∫
Ω

η(x)

∫
R
H1(x, y) [γ(x, y)− γ̄(x)] dνx(y) dx.

As this is true for every η ∈ Cb(Ω), we conclude that

(15)

∫
R
H1(x, y) [γ(x, y)− γ̄(x)] dνx(y) = 0, a.e. x ∈ Ω.

But ∫
R
H1(x, y)γ̄(x) dνx(y) =

∫
R
H1(x, y)

∫
R
γ(x, y′) dνx(y′) dνx(y) =

∫
R

∫
R
H1(x, y′)γ(x, y) dνx(y′) dνx(y).

Therefore, (15) reads as∫
R

[
H1(x, y)−

∫
R
H1(x, y′) dνx(y′)

]
γ(x, y) dνx(y) = 0, a.e. x ∈ Ω.

As this is true for all γ ∈ Cb(Ω× R) we obtain

H1(x, y)−
∫
R
H1(x, y′) dνx(y′) = 0, νx-a.e. y ∈ R,

which shows that, for a.e. x ∈ Ω, the support of νx is contained in the set of y ∈ R such that

H1(x, y) =

∫
R
H1(x, y′) dνx(y′),

which is a closed set since H1(x, ·) is continuous.

Now let γ ∈ Cb(Ω× R) satisfy γ ≥ 0. For each x ∈ Ω and y ∈ R take

µyx =
1

2
δ−
√
γ(x,y)

+
1

2
δ√

γ(x,y)
.

Then, µyx ∈ P(R) has compact support, M1(µyx) = 0 and M2(µyx) = γ(x, y). By (11) of Proposition 6,

0 ≤ −
∫

Ω×R
−
∫

Ω×R
∂2

11w(x, x′, y, y′)M2(µyx) dν(x′, y′) dν(x, y)

+−
∫

Ω×R
−
∫

Ω×R
∂2

12w(x, x′, y, y′)M1(µyx)M1(µy
′

x′) dν(x′, y′) dν(x, y)

= −
∫

Ω×R
H2(x, y) γ(x, y) dν(x, y).

As this is true for any γ ∈ Cb(Ω× R) with γ ≥ 0, we conclude that H2(x, y) ≥ 0 a.e. x ∈ Ω and νx-a.e. y ∈ R, so for

a.e. x ∈ Ω, the support of νx is contained in the set of y ∈ R such that H2(x, y) ≥ 0, which, again, is a closed set since

H2(x, ·) is continuous. Thus, inclusion (12) is proved.

Finally, let γ ∈ Cb(Ω × R) satisfy (14). For each x ∈ Ω and y ∈ R take µyx = δγ(x,y). Then, µyx ∈ P(R) has

compact support, M1(µyx) = γ(x, y) and M2(µyx) = γ(x, y)2; moreover,∫
R
M1(µyx) dνx(y) =

∫
R
γ(x, y) dνx(y) = 0.

By (11) of Proposition 6, we readily obtain (13), which concludes the proof. �
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The proof of Proposition 7 consists in showing that Conditions (10)–(11) imply (12)–(13). It is not difficult to

check that, in fact, (10)–(11) and (12)–(13) are equivalent. In the sequel of our analysis, we will solely use (12), since

relation (13) is, in general, difficult to handle.

6. Structure of the minimizing Young measures for a double-well potential

From this section onwards, we focus on a paradigmatic example of a double-well potential. First, assume w has

the form w(x, x,′ y, y′) = f(y − y′) for some f : R → R. The fact that the dependence of w on (y, y′) is through the

difference y − y′ is realistic in most of the models mentioned in the introduction, and, particularly, in peridynamics.

However, the assumption that w does not depend on (x, x′) is not realistic in peridynamics or other models, but we

have been unable to derive from Proposition 7 tractable conditions when w depends on (x, x′). Thus, the functionals

I of (1) and Ī of Theorem 1 read as

I(u) = −
∫

Ω

−
∫

Ω

f(u(x)− u(x′)) dx′ dx,

Ī(ν) = −
∫

Ω×R
−
∫

Ω×R
f(y − y′) dν(x′, y′) dν(x, y),

(16)

and Proposition 7 takes the following form.

Proposition 8. Let p ≥ 1 and assume f : R→ R is even, of class C2 and that there exists c > 0 such that

|f(t)|+ |f ′(t)|+ |f ′′(t)| ≤ c (1 + |t|p) , t ∈ R.

Let u ∈ Lp0(Ω), let Ī be as in (16), and let ν be a minimizer of Ī in Ypu(Ω). Define H1 : R→ R and H2 : R→ R as

(17) H1(y) := −
∫

Ω×R
f ′(y − y′) dν(x′, y′), H2(y) := −

∫
Ω×R

f ′′(y − y′) dν(x′, y′).

Then, for a.e. x ∈ Ω,

(18) supp νx ⊂
{
y ∈ R : H1(y) =

∫
R
H1(y′) dνx(y′), H2(y) ≥ 0

}
.

Finally,

−
∫

Ω×R
−
∫

Ω×R
f ′′(y − y′)

[
γ(x, y)2 − γ(x, y)γ(x′, y′)

]
dν(x′, y′) dν(x, y) ≥ 0

for any γ ∈ Cb(Ω× R) satisfying (14).

It is important to notice, that, although f does not depend on (x, x′), the measure ν depends on x, as we will see

in Theorem 9.

According to Proposition 5, the functional I of (16) is lower semicontinuous in the weak topology of Lp0(Ω) if

and only if f is convex. Thus, for the relaxation not to be trivial, we take a non-convex f and, in order to apply

Proposition 8, we take an even function with p growth. The simplest choice, that we will consider from now on, is,

for fixed α > 0,

(19) f(t) = −2αt2 + t4

(thus we are taking p = 4), which represent a typical example of a double-well potential. As in Section 4, we denote

by I∗ the relaxation of I in (16) in the weak topology of L4
0(Ω) and by Ī the relaxed functional in the space of

Young measures. Our goal here is to obtain a characterization of the measures ν that minimize Ī among all Young

measures whose first moment is u. Such a characterization is obtained in Theorem 9 below and paves the way for the

computation of I∗ in the next section.

By using that −
∫

Ω
M1(νx) dx = −

∫
Ω
u(x) dx = 0 and defining the function G : R2 → R

(20) G(s, t) := −4αs+ 6s2 + 2t,

it is immediate to see that, with the choice (19), the functionals I : L4
0(Ω)→ R and Ī : Y4,0(Ω)→ R of (16) read as

(21) I(u) = G

(
−
∫

Ω

u2,−
∫

Ω

u4

)
, Ī(ν) = G

(
−
∫

Ω

M2(ν),−
∫

Ω

M4(ν)

)
,
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where we have made the abbreviation

−
∫

Ω

Mi(ν) for −
∫

Ω

Mi(νx) dx, i ∈ N.

From (17) we compute the quantities H1 : R→ R and H2 : R→ R when f is as in (19):

H1(y) = 4

(
y3 −By −−

∫
Ω

M3(ν)

)
, H2(y) = 4

(
3y2 −B

)
,

where we have set

(22) B = α− 3−
∫

Ω

M2(ν).

As a consequence, for a.e. x ∈ Ω,∫
R
H1(y′) dνx(y′) = 4

(
M3(νx)−Bu(x)−−

∫
Ω

M3(ν)

)
.

Thus, setting

(23) A(x) = M3(νx)−Bu(x),

condition (18) of Proposition 8 entails that, if ν is a minimizer of Ī in Ypu(Ω), it satisfies, for a.e. x ∈ Ω,

(24) supp νx ⊂
{
y ∈ R : y3 −By −A(x) = 0, y2 ≥ B/3

}
.

We present the main result of this section, in which we use (24), as well as other optimality conditions that we will

progressively establish, to describe the structure of the minimizers of Ī. Its proof follows the steps ii)–iv) described in

the introduction.

Theorem 9. Let u ∈ L4
0(Ω) and ν be a minimizer in Y4

u(Ω) of the functional Ī defined in (21). Then, there exist

two disjoint measurable sets Ω1 and Ω2 contained in Ω with |Ω \ (Ω1 ∪ Ω2)| = 0 and a constant v > 0 such that

−v < u(x) < v for all x ∈ Ω2, and

(25) νx =

δu(x) for x ∈ Ω1,(
1
2 −

u(x)
2v

)
δ−v +

(
1
2 + u(x)

2v

)
δv for x ∈ Ω2.

In addition, the following relations involving the quantity B defined in (22) hold true:

B =
α− 3

|Ω|
∫

Ω1
u2

1 + 3 |Ω2|
|Ω|

,(26)

u2(x) ≥ B for all x ∈ Ω1, u2(x) < B for all x ∈ Ω2,(27)

if |Ω2| > 0 then B = v2.(28)

Proof. The proof is divided into several steps.

Step 1. We begin by constructing Ω1 and Ω2. Condition (24) implies that, for a.e. x ∈ Ω, the measure νx is a

convex combination of three Dirac masses supported in the roots of the polynomial

(29) y3 −By −A(x) = 0.

We will now show that, when such a polynomial has three real distinct roots, one of them does not satisfy

(30) y2 ≥ B/3

and thus can be discarded in view of condition (24).

Let us thus assume that the polynomial (29) has three real distinct roots. A necessary and sufficient condition for

that is the discriminant 4B3 − 27A(x)2 of equation (29) to be positive, which gives B > 0 and −1 < A(x)
2

√
27
B3 < 1.
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Let θ ∈ (0, π) satisfy cos θ = A(x)
2

√
27
B3 . According to Viète’s formula, the three real roots y1, y2, y3 of (29) are given

by

(31) yk = 2

√
B

3
cos

(
θ + 2(k − 1)π

3

)
, k = 1, 2, 3.

We now claim that y3 does not fulfill condition (30), which is equivalent to cos2
(
θ+4π

3

)
≥ 1

4 . Indeed, since θ ∈ (0, π),

we have θ+4π
3 ∈

(
4π
3 ,

5π
3

)
and, hence, cos2

(
θ+4π

3

)
< 1

4 .

This discussion allows us to define Ω1 as the set of x ∈ Ω such that supp νx consists of one point, and Ω2 as the

set of x ∈ Ω such that supp νx consists of two points.

Step 2. We show that Ω1 and Ω2 are measurable. As |Ω\ (Ω1∪Ω2)| = 0, it suffices to show that Ω1 is measurable.

According to our definition, and recalling that M1(νx) = u(x), we have Ω1 = {x ∈ Ω : νx = δu(x)}. In fact, we claim

that Ω1 = {x ∈ Ω : M2(νx) = u(x)2}. Indeed, if x ∈ Ω1, then M2(νx) = M2(δu(x)) = u(x)2. Conversely, let x ∈ Ω

satisfy M2(νx) = u(x)2. Then, by Hölder’s inequality,

|u(x)| = |M1(νx)| ≤
∫
R
|y|dνx(y) ≤

√
M2(νx) = |u(x)|,

so all inequalities of this string are in fact equalities. Equality∫
R
|y|dνx(y) =

√
M2(νx)

expresses the case of equality in Hölder’s inequality, which implies that there exists r ≥ 0 such that y2 = r2 for νx-a.e.

y ∈ R. Hence νx = t1δ−r + t2δr for some t1, t2 ≥ 0 with t1 + t2 = 1. But then

u(x)2 = M2(νx) =

∫
R
y2 dνx(y) = t1r

2 + t2r
2 = r2,

so r = |u(x)|. On the other hand,

u(x) = M1(νx) =

∫
R
y dνx(y) = −t1|u(x)|+ t2|u(x)| = (t2 − t1)|u(x)|,

which implies that u(x) = 0 or {t1, t2} = {0, 1}, which, in either case, shows that supp νx consists of one point.

Therefore, as claimed, Ω1 = {x ∈ Ω : M2(νx) = u(x)2}. As ν is a Young measure, the map x 7→M2(νx) is measurable.

Since u2 is also measurable, the set Ω1 is measurable.

Step 3. There exist v1, v2 ∈ L4(Ω2) such that v1(x) < u(x) < v2(x) for all x ∈ Ω2 and

(32) νx =
v2(x)− u(x)

v2(x)− v1(x)
δv1(x) +

u(x)− v1(x)

v2(x)− v1(x)
δv2(x) for x ∈ Ω2.

Indeed, according to our definition of Ω2, for each x ∈ Ω2 there exist v1(x) < v2(x) and λ(x) ∈ (0, 1) such that

νx = λ(x)δv1(x) + (1− λ(x))δv2(x). Condition M1(νx) = u(x) yields λ(x)v1(x) + (1− λ(x))v2(x) = u(x), thus

λ(x) =
v2(x)− u(x)

v2(x)− v1(x)
and 1− λ(x) =

u(x)− v1(x)

v2(x)− v1(x)
.

In addition, the restriction λ(x) ∈ (0, 1) leads to v1(x) < u(x) < v2(x).

Now we show that the functions v1, v2 are measurable. Indeed, using (31), it is easy to see that y2 < 0 < y1,

thus v1 = y2 and v2 = y1. Since A(x) is measurable, so is θ = θ(x), as a composition of a continuous function after a

measurable one, and the same occurs for v1 and v2.

Finally, we check that v1, v2 ∈ L4(Ω2). Given x ∈ Ω2, let y ∈ R satisfy y3−By−A(x) = 0. By Young’s inequality,

|y|3 ≤ |B||y|+ |A(x)| ≤ 2|B|3/2

3
+
|y|3

3
+ |A(x)|,

so

(33)
2

3
|y|3 ≤ 2|B|3/2

3
+ |A(x)|.
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Looking at (23), we note that A ∈ L 4
3 (Ω2), since M3(ν) ∈ L 4

3 (Ω2) (because ν ∈ Y4(Ω)) and u ∈ L4(Ω). In view of

(29) and (33), we obtain that v1, v2 ∈ L4(Ω2).

Step 4. We show that v1 + v2 = 0 a.e. in Ω2, by performing variations of the functions v1 and v2. We can assume

in this step that |Ω2| > 0. We fix ε > 0 and set

Ω2,ε := {x ∈ Ω2 : v1(x) ≤ u(x)− ε and u(x) + ε ≤ v2(x)}.

For ε > 0 small enough, |Ω2,ε| > 0. We take ϕ ∈ L∞(Ω2,ε) \ {0} and define, for each t, s ∈ R with

|t|, |s| < ε

‖ϕ‖∞
,

the functions vt1, v
s
2 : Ω2,ε → R as vt1 := v1 + t ϕ and vs2 := v2 + sϕ. Then, vt1 < u < vs2 in Ω2,ε and, if we set

λt,s1 :=
vs2 − u
vs2 − vt1

, λt,s2 :=
u− vt1
vs2 − vt1

,

we have λt,s1 , λt,s2 > 0 and λt,s1 + λt,s2 = 1. Consider now νt,s ∈ Y(Ω) defined by

νt,s =

{
ν in Ω \ Ω2,ε,

λt,s1 δvt1 + λt,s2 δvs2 in Ω2,ε,

which, due to (32), coincides with ν for t = s = 0, and satisfies M1(ν) = u,

M2(νt,s) =

{
M2(ν) in Ω \ Ω2,ε,

λt,s1

(
vt1
)2

+ λt,s2

(
vs2
)2

in Ω2,ε,

M4(νt,s) =

{
M4(ν) in Ω \ Ω2,ε,

λt,s1

(
vt1
)4

+ λt,s2

(
vs2
)4

in Ω2,ε.

As u ∈ L4(Ω) and v1, v2 ∈ L4(Ω2), we have that νt,s ∈ Y4
u(Ω).

We compute the first terms of the Taylor development when (t, s)→ (0, 0) of the functions involved: up to order

O(|(t, s)|2), we have (
vt1
)2

= v2
1 + 2tv1ϕ,

(
vs2
)2

= v2
2 + 2sv2ϕ,(

vt1
)4

= v4
1 + 4tv3

1ϕ,
(
vs2
)4

= v4
2 + 4sv3

2ϕ,

λt,s1 =
v2 − u
v2 − v1

+ t
v2 − u

(v2 − v1)2
ϕ+ s

u− v1

(v2 − v1)2
ϕ,

λt,s2 =
u− v1

v2 − v1
− t v2 − u

(v2 − v1)2
ϕ− s u− v1

(v2 − v1)2
ϕ,

so

λt,s1

(
vt1
)2

+ λt,s2

(
vs2
)2

= u(v1 + v2)− v1v2 − t(v2 − u)ϕ+ s(u− v1)ϕ

and

λt,s1

(
vt1
)4

+ λt,s2

(
vs2
)4

=− v1v2(v2
1 + v1v2 + v2

2) + u(v3
1 + v2

1v2 + v1v
2
2 + v3

2)

− t(v2 − u)(3v2
1 + 2v1v2 + v2

2)ϕ

+ s(u− v1)(v2
1 + 2v1v2 + 3v2

2)ϕ,

again up to O(|(t, s)|2) terms. Using these developments and recalling (20), (21) and (22), we obtain that

Ī(νt,s) = Ī(ν)− t

|Ω|

∫
Ω2,ε

[
−4B + 2(3v2

1 + 2v1v2 + v2
2)
]

(v2 − u)ϕ

+
s

|Ω|

∫
Ω2,ε

[
−4B + 2(v2

1 + 2v1v2 + 3v2
2)
]

(u− v1)ϕ
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up to O(|(t, s)|2) terms. As ν is a minimizer of Ī, the function (t, s) 7→ Ī(νt,s) has a minimum in (0, 0), implying

d

dt
Ī(νt,s)

∣∣∣∣
t=s=0

=
d

ds
Ī(νt,s)

∣∣∣∣
t=s=0

= 0,

which yields ∫
Ω2,ε

[
−2B + 3v2

1 + 2v1v2 + v2
2

]
(v2 − u)ϕ = 0,∫

Ω2,ε

[
−2B + v2

1 + 2v1v2 + 3v2
2

]
(u− v1)ϕ = 0.

Since this is true for all ϕ ∈ L∞(Ω2,ε), we infer that(
−2B + 3v2

1 + 2v1v2 + v2
2

)
(v2 − u) =

(
−2B + v2

1 + 2v1v2 + 3v2
2

)
(u− v1) = 0

a.e. in Ω2,ε. As v1 < u < v2 in Ω2,ε we obtain that

(34) − 2B + 3v2
1 + 2v1v2 + v2

2 = −2B + v2
1 + 2v1v2 + 3v2

2 = 0.

Subtracting these equalities, we find that v2
2 − v2

1 = 0, so v1 + v2 = 0 a.e. in Ω2,ε. As Ω2 =
⋃
n∈N Ω2,1/n, we conclude

that v1 + v2 = 0 a.e. in Ω2.

Step 5. We now construct the constant v and prove (25), (26) and (28). First of all, observe that, if |Ω2| = 0 we

can redefine Ω2 as the empty set, so there is no need of constructing v, thus (25) has been established in this case.

On the other hand, (26) reduces to (22).

Assume, instead, that |Ω2| > 0. By adding the two equalities in (34) we obtain v2
1 + v1v2 + v2

2 = B a.e. in Ω2,ε,

thus, as above, v2
1 + v1v2 + v2

2 = B a.e. in Ω2. By combining this relation with the one established in Step 4, we

obtain that v2
1 = v2

2 = B a.e. in Ω2. Due to the fact that v1 < v2, we find that there exists a constant v > 0 such that

v2 = −v1 = v a.e. in Ω2 and v2 = B > 0.

Using the definition of B given in (22), as well as (32), we obtain

B = α− 3

|Ω|

(∫
Ω1

u2 + |Ω2|v2

)
= α− 3

|Ω|

(∫
Ω1

u2 + |Ω2|B
)

and, by solving in B, we get (26).

Step 6. Finally, we prove (27). The second relation easily follows from the previous points: if |Ω2| = 0, as already

mentioned, we can redefine Ω2 as the empty set, so there is nothing to prove; otherwise, if |Ω2| > 0, it follows from

the fact that u2 < v2 a.e. in Ω2 and that, in this case, we have v2 = B from (28).

The main idea to prove the first relation is to perform some variations on the domain Ω1. Let S := {x ∈ Ω1 :

u(x)2 < B}. We shall show that |S| = 0. If B ≤ 0, this is immediate, so assume B > 0. By Lebesgue’s differentiation

theorem, there exists a set S′ ⊂ S such that |S′| = |S| and, for all x0 ∈ S′, if we set Sx0,t := B(x0, t
1
n ) ∩ S for t > 0,

we have that

lim
t↘0

|Sx0,t|
ωnt

= 1, lim
t↘0

1

ωnt

∫
Sx0,t

u2 = u(x0)2, lim
t↘0

1

ωnt

∫
Sx0,t

u4 = u(x0)4,

where ωn is the volume of the unit ball of Rn. These equalities can be equivalently written as

(35)
d

dt
|Sx0,t|

∣∣∣∣
t=0+

= ωn,
d

dt

∫
Sx0,t

u2

∣∣∣∣∣
t=0+

= ωnu(x0)2,
d

dt

∫
Sx0,t

u4

∣∣∣∣∣
t=0+

= ωnu(x0)4.

We want to show that S′ = ∅. Assume, for a contradiction, that S′ 6= ∅, fix x0 ∈ S′ and, for t > 0, define

νt ∈ Y4
u(Ω) as

νtx :=

νx if x ∈ Ω \ Sx0,t,(
1
2 −

u(x)

2
√
B

)
δ−
√
B +

(
1
2 −

u(x)

2
√
B

)
δ√B if x ∈ Sx0,t.

Then,

M2(νtx) =

{
M2(νx) if x ∈ Ω \ Sx0,t,

B if x ∈ Sx0,t,
M4(νtx) =

{
M4(νx) if x ∈ Ω \ Sx0,t,

B2 if x ∈ Sx0,t,
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so

−
∫

Ω

M2(νt) =
1

|Ω|

(∫
Ω

M2(ν)−
∫
Sx0,t

u2 + |Sx0,t|B

)
,

−
∫

Ω

M4(νt) =
1

|Ω|

(∫
Ω

M4(ν)−
∫
Sx0,t

u4 + |Sx0,t|B2

)
.

By (35),

d

dt
−
∫

Ω

M2(νt)

∣∣∣∣
t=0+

=
ωn
|Ω|
(
−u(x0)2 +B

)
,

d

dt
−
∫

Ω

M4(νt)

∣∣∣∣
t=0+

=
ωn
|Ω|
(
−u(x0)4 +B2

)
.

Thus, using (20), (21) and (22),

d

dt
Ī(νt)

∣∣∣∣
t=0+

=

(
−4α+ 12−

∫
Ω

M2(ν)

)
ωn
|Ω|
(
−u(x0)2 +B

)
+

2ωn
|Ω|

(
−u(x0)4 +B2

)
=
−4ωnB

|Ω|
(
−u(x0)2 +B

)
+

2ωn
|Ω|

(
−u(x0)4 +B2

)
=
−2ωn
|Ω|

(
u(x0)2 −B

)2
.

Since ν0 = ν and ν minimizes Ī, we have d
dt Ī(νt)

∣∣
t=0+ ≥ 0, so u(x0)2 = B, a contradiction with the fact that x0 ∈ S′.

Therefore, S′ = ∅ and, hence, |S| = 0, which shows that u2 ≥ B a.e. in Ω1. We redefine Ω1 by removing a set of

measure zero, so that u2 ≥ B in Ω1. �

7. Computation of the relaxation

In this section we present the formula for I∗. In view of Theorem 9, it is important to study equality (26).

Considering also (27), given u ∈ L4
0(Ω) and b ≥ 0, we introduce the sets

(36) Ω1,u,b = {x ∈ Ω : u(x)2 ≥ b}, Ω2,u,b = Ω \ Ω1,u,b,

and we define Fu : [0,∞)→ R as

(37) Fu(b) := b− α+
3

|Ω|

[∫
Ω1,u,b

u2 + b|Ω2,u,b|

]
.

Thanks to (27), equality (26) holds for B = b if and only if

(38) Fu(b) = 0.

The following simple result shows important properties of Fu.

Lemma 10. Let u ∈ L4
0(Ω). Then the function Fu defined in (37) is continuous, strictly increasing and satisfies

Fu
(
α
4

)
≥ 0. Moreover, Fu

(
α
4

)
= 0 if and only if u2 ≤ α

4 a.e. in Ω.

Proof. We notice that

Fu(b) = b− α+ 3−
∫

Ω

max{u2, b}.

With this expression, using dominated convergence, it is easy to see that Fu is continuous and strictly increasing.

Moreover,

Fu

(α
4

)
= −3

4
α+ 3−

∫
Ω

max{u2,
α

4
} ≥ −3

4
α+ 3

α

4
= 0,

with equality if and only if max{u2, α4 } = α
4 a.e. in Ω, that is to say, u2 ≤ α

4 a.e. in Ω. �
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Given u ∈ L4
0(Ω), the function Hu : [0,∞)→ R defined by

(39) Hu(b) := G

(
−
∫

Ω

max{u2, b},−
∫

Ω

max{u4, b2}
)
,

where G is as in (20), will be important in the sequel.

The following is the central result of the article and calculates I∗.

Theorem 11. Assume Ω is a connected Lipschitz open set of Rn and let u ∈ L4
0(Ω). For each b ≥ 0 consider the sets

(36), as well as the functions Fu of (37) and Hu of (39). The following assertions hold:

a) If

α− 3−
∫

Ω

u2 ≤ 0,

then I∗(u) = I(u).

b) If

(40) α− 3−
∫

Ω

u2 > 0,

then there exists a unique solution of equation (38), which will be denoted by bu, satisfies 0 < bu ≤ α
4 , and

I∗(u) = Hu(bu).

Proof. We start with a). Let B be the quantity defined in (22), let ν be a minimizer of Ī in Y4
u(Ω) and let Ω1,Ω2 be

the sets given by Theorem 9. Then∫
Ω

M2(ν) =

∫
Ω1

u2 +B|Ω2| ≥
∫

Ω1

u2 +

∫
Ω2

u2 =

∫
Ω

u2,

so

B = α− 3−
∫

Ω

M2(ν) ≤ α− 3−
∫

Ω

u2 ≤ 0,

so by (28), |Ω2| = 0, which shows that νx = δu(x) for a.e. x ∈ Ω, and, consequently, I∗(u) = I(u).

We show b). We have

Fu(0) = −α+ 3−
∫

Ω

u2 < 0,

so, by Lemma 10, equation (38) has one and only one solution b = bu in (0,∞), and it satisfies bu ≤ α
4 . As a

consequence of Theorem 9, we obtain that

(41) I∗(u) = min{I(u), Hu(bu)}.

Assume, for the moment, that u is continuous: we shall show that

(42) I∗(u) = Hu(bu).

As u is continuous and integrates 0 over the connected set Ω, it has a zero. Therefore, in a non-empty open set we

have

(43) u2 < α− 3−
∫

Ω

u2.

Assume, for a contradiction, that I∗(u) = I(u). Then, there exists a minimizer ν of Ī in Y4
u(Ω) for which, using the

notation of Theorem 9, one has |Ω2| = 0. By (26) and (27), we obtain that

u2 ≥ B = α− 3−
∫

Ω

u2 a.e. in Ω,

contrary to (43). Therefore, I∗(u) 6= I(u), so by (41) we obtain (42).

Thus, (42) holds for continuous functions u. We now drop the continuity assumption, so let u ∈ L4
0(Ω), and let

{vj}j∈N be a sequence in C(Ω) ∩ L4(Ω) converging to u in L4(Ω). Set

αj := −
∫

Ω

vj , j ∈ N.
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Then αj → 0 as j →∞. Define uj := vj − αj for j ∈ N. Then {uj}j∈N ⊂ L4
0(Ω) and uj → u in L4

0(Ω) as j →∞. In

particular,

−
∫

Ω

u2
j → −

∫
Ω

u2 as j →∞,

so by (40) we can assume without loss of generality that

α− 3−
∫

Ω

u2
j > 0, j ∈ N,

and buj is well defined. By compactness, for a subsequence (not relabelled), there exists b ∈ [0, α4 ] such that buj → b

as j →∞, and, by the continuity of Fu we have that Fu(b) = 0. Thus, b is the only solution to (38) corresponding to

u, and, due to (40), b = bu > 0.

As uj is continuous, by (41) and (42),

Huj (buj ) ≤ I(uj), j ∈ N.

Due to the continuity of I with respect to the strong convergence in L4(Ω) (see (21)), we obtain that I(uj) → I(u)

as j → ∞. Analogously Huj (buj ) → Hu(bu). Therefore, Hu(bu) ≤ I(u). Thanks to (41), we conclude that (42) also

holds. �

We finally observe that, if u ∈ L4
0(Ω) is such that Fu(0) < 0, then bu > 0 satisfies

−
∫

Ω

max{u2, bu} =
α− bu

3
,

hence we have the simplified expression

(44) Hu(bu) = G

(
α− bu

3
,−
∫

Ω

max{u4, b2u}
)
.

A more compact way of writing Theorem 11 is as follows. Given u ∈ L4
0(Ω), if we define Fu : R → R with the

same formula as (37) but letting b ∈ R, we still have that Fu is continuous, increasing, Fu
(
α
4

)
≥ 0 and, in addition,

Fu(b) = b− α+ 3−
∫

Ω
u2 for b ≤ 0. Consequently,

Fu

(
min{α− 3−

∫
Ω

u2, 0}
)
≤ 0;

therefore, equation (38) has a unique solution in R, in fact, in[
min{α− 3−

∫
Ω

u2, 0}, α
4

]
.

The alternative way of stating Theorem 11 reads as follows.

Corollary 12. Assume Ω is a connected Lipschitz open set of Rn. Let u ∈ L4
0(Ω). Then

I∗(u) = I
(

max
{
|u|,
√

max{bu, 0}
})

,

where bu is the only solution of (38) in R.

8. Computation of the relaxation for some specific examples

After having established, in the previous section, the general way to compute the relaxation, we present here some

examples where we apply such results. Apart from being useful to clarify the method described in Theorem 11, they

will be the key point to obtain the results of the next section.

The following example was essentially shown in [11, Ex. 2]. Here we give a proof based on Theorem 11.

Example 13. Let u ∈ L4
0(Ω) be such that u2 ≤ α

4 a.e. in Ω. Then I∗(u) = −α
2

2 .

Proof. By Lemma 10, Fu
(
α
4

)
= 0, so bu = α

4 , and, by Theorem 11, I∗(u) = Hu (bu) = G
(
bu, b

2
u

)
= −α

2

2 . �

In the next example, we compute the relaxation for functions taking only two values.
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Example 14. Fix a ∈
(
0, 1

2

]
, let M > 0, consider any A ⊂ Ω with |A| = a|Ω| and define the function

(45) u =

{
(1− a)M in A,

−aM in Ω \A.

Then,

(46) I∗(u) =


I(u) = 2a(1− a)M4 − 4a(1− a)αM2 if α

M2 < a(3− 2a),
8a(1−a)4M4−4a(1−a)2αM2−2(1−a)α2

4−3a if a(3− 2a) ≤ α
M2 < 4(1− a)2,

−α
2

2 if α
M2 ≥ 4(1− a)2.

Proof. We have

−
∫

Ω

u2 = a(1− a)M2, −
∫

Ω

u4 = a(1− a)(1− 3a+ 3a2)M4,

so, if α
M2 ≤ 3a(1−a), which represents a subcase of the first line in (46), Theorem 11(a) gives I∗(u) = I(u), as desired.

Assume now that α
M2 > 3a(1− a). In this case, we apply Theorem 11(b) to compute the relaxation. To this end,

we have to find the unique solution of (38), thus we write the expression of Fu, according to the different values of b.

Observe that a2 ≤ (1− a)2 and Fu(0) < 0.

Values of b Ω1,u,b Ω2,u,b Fu(b)

0 < b ≤ a2M2 Ω ∅ b− α+ 3a(1− a)M2

a2M2 < b ≤ (1− a)2M2 A Ω \A (4− 3a)b− α+ 3a(1− a)2M2

b > (1− a)2M2 ∅ Ω 4b− α

We distinguish three cases:

• If Fu
(
a2M2

)
> 0, which is equivalent to the condition in the first line of (46), then the unique solution of

(38) lies in (0, a2M2) and, according to the first line of the previous table and Theorem 11(b), we have

I∗(u) = Hu(bu) = G

(
−
∫

Ω

u2,−
∫

Ω

u4

)
= I(u).

• If Fu
(
a2M2

)
≤ 0 < Fu

(
(1− a)2M2

)
, which is equivalent to the condition in the second line of (46) (observe

that such a condition is nonempty only if 0 < a < 1
2 ), the second line of the table for Fu gives that the solution

of (38) is

bu =
α− 3a(1− a)2M2

4− 3a
,

thus, thanks to Theorem 11(b),

I∗(u) = Hu(bu) = G
(
a(1− a)2M2 + bu(1− a), a(1− a)4M4 + b2u(1− a)

)
,

which gives the desired expression.

• Finally, if Fu
(
(1− a)2M2

)
≤ 0, which is equivalent to the condition in the third line of (46), then, from the

table of Fu, we obtain bu = α
4 and

I∗(u) = Hu(bu) = G
(
bu, b

2
u

)
= G

(
α

4
,
α2

16

)
= −α

2

2
.

Observe that the same conclusion can be achieved from Example 13.

�

The last example for which we compute the relaxation is for odd extensions of power functions.
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Example 15. Let Ω = (−1, 1) and u(x) = M |x|p sgnx, with M > 0 and p > 0. Then,

(47) I∗(u) =



I(u) = − 4αM2

2p+1 + 8M4 p2+4p+1
(2p+1)2(4p+1)

if α
M2 ≤ 3

2p+1 ,

G

α− bu
3

,
M4 + 4pb2u

(√
bu
M

) 1
p

4p+ 1

 if 3
2p+1 <

α
M2 ≤ 4,

−α
2

2 if α
M2 > 4,

where bu is the unique solution b of the equation

(48) b+
6p

2p+ 1
b

(√
b

M

) 1
p

= α− 3M2

2p+ 1
.

Proof. We start, as in Example 14, computing

−
∫

Ω

u2 =
M2

2p+ 1
, −

∫
Ω

u4 =
M4

4p+ 1
;

thus, if α
M2 ≤ 3

2p+1 , Theorem 11(a) gives I∗(u) = I(u), as desired.

If, instead, α
M2 >

3
2p+1 , according to Theorem 11(b), we have to determine the unique solution bu of (38). Using

Lemma 10 we find that, if α
M2 ≤ 4, we have that Fu

(
M2
)
≥ Fu

(
α
4

)
≥ 0, so 0 < bu ≤M2 = u(1)2. As a consequence,

if we denote by xu the unique solution x of u(x)2 = bu lying in (0, 1], i.e.,

xu =

(√
bu
M

) 1
p

,

we have Ω1,u,b = [−1,−xu] ∪ [xu, 1], Ω2,u,b = (−xu, xu) and

Fu(b) = b− α+ 3

∫ 1

xu

u(x)2 dx+ 3bxu = b− α+
3M2

2p+ 1

(
1− x2p+1

u

)
+ 3bxu.

By using the definition of xu, it can be easily seen that Fu(b) = 0 is equivalent to (48). Therefore, we conclude by

using Theorem 11(b) and (44),

I∗(u) = Hu(bu) = G

(
α− bu

3
,

∫ 1

xu

u4 + b2uxu

)
= G

(
α− bu

3
,
M4(1− x4p+1

u )

4p+ 1
+ b2uxu

)
which, using again the definition of xu, can be reduced to the expression in the second line of (47).

Finally, if α
M2 > 4, then u2 < α

4 in Ω, thus, by Example 13, we have I∗(u) = −α
2

2 . �

9. Negative representation results for the relaxation

By using the examples provided in the previous section, we are now able to provide some negative representation

results for the relaxed functional I∗. This is in contrast with the local case, in which the relaxation is given by the

convexification of the integrand (see, e.g., [22, Th. 7.13 and Prop. 7.15]), and with abstract relaxation results, which

assert that under some general assumptions (most notably, the additivity with respect to the set of integration, which

is not satisfied in the nonlocal setting), the relaxation has an integral representation (see, e.g., [17]).

Now we show that I∗ is not given by a double integral of the form (16).

Proposition 16. There does not exist a Borel measurable function g : R→ R such that

I∗(u) = −
∫

Ω

−
∫

Ω

g(u(x)− u(x′)) dx′ dx, u ∈ L4
0(Ω).
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Proof. Assume, for a contradiction, the existence of such a g and note that it can be assumed to be even, since g and

the function

y 7→ g(y) + g(−y)

2
give rise to the same functional.

First, if we take u = 0, then Example 13 gives g(0) = −α
2

2 .

Consider now the functions u treated in Example 14, so let a ∈
(
0, 1

2

]
and M > 0 be such that α

M2 < a(3− 2a).

On the one hand, from there, we know that

I∗(u) = I(u) = −4a(1− a)αM2 + 2a(1− a)M4.

On the other hand, assuming the existence of an even g, by using (45) we would have that

I∗(u) = (1− 2a+ 2a2)g(0) + 2a(1− a)g(M).

Therefore,

g(M) = −1− 2a+ 2a2

2a(1− a)
g(0)− 2αM2 +M4,

which is a contradiction because the right-hand side depends on a, since g(0) 6= 0, and the left-hand side does not. �

By looking at the expression (21), one might think that the relaxation of I∗ is given by a function which depends

only on the second and fourth moments of u. We show that this is not the case.

Proposition 17. There does not exist any function Ḡ : R2 → R such that

I∗(u) = Ḡ

(
−
∫

Ω

u2,−
∫

Ω

u4

)
.

Proof. Consider Ω = (−1, 1). On the one hand, we take u1 to be the function of Example 15 with p = 1 and M =
√

2α
3 ,

i.e.,

u1(x) =

√
2α

3
x, x ∈ Ω.

It is easy to see that the solution of (48) is bu1 = α
6 , thus Example 15 gives

I∗(u1) = G

(
5α

18
,
α2

10

)
= −121

270
α2.

On the other hand, consider u2 as in (45) with a = 1
2 −

1
2
√

6
and M = 4

√
α
15 . Example 14 gives

I∗(u2) = − 2

1215

2646 + 281
√

6

10 +
√

6
α2.

Thus, since −
∫

Ω
u2

1 = −
∫

Ω
u2

2 = 2
9α and −

∫
Ω
u4

1 = −
∫

Ω
u4

2 = 4
45α

2, but I∗(u1) 6= I∗(u2), the existence of a function Ḡ as

in the statement is excluded. �

10. Discussion and comparison with the local case

We finish this article with a discussion of Theorem 11, which, at the same time, points out the analogies and

differences with the local case.

First of all, we recall the results for the local case. Define the functionals J : L4(Ω)→ R and J̄ : Y4(Ω)→ R as

J(u) = −
∫

Ω

f(u(x)) dx, J̄(ν) = −
∫

Ω×R
f(y) dν(x, y).

It is well known (see, e.g., [22, Th. 7.13 and Prop. 7.15]) that the relaxation of J in the weak topology is given by

J∗(u) = −
∫

Ω

f c(u(x)) dx,
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where f c is the convexification of f , which in the particular case of (19) reads

f c(t) =

{
−2αt2 + t4 if |t| ≥

√
α,

−α2 if |t| <
√
α.

In fact, it is easy to see (see, e.g., [22, Th. 8.20]) that, for a given u ∈ L4(Ω), the measure ν ∈ Y4(Ω) that satisfies

J̄(ν) = J∗(u) and M1(ν) = u is

(49) νx =

δu(x) if |u(x)| ≥
√
α(

1
2 −

u(x)
2
√
α

)
δ−
√
α +

(
1
2 + u(x)

2
√
α

)
δ√α if |u(x)| <

√
α.

Therefore, an equivalent way of expressing J∗ is through the replacement of u2 with max{u2, α}, that is to say,

J∗(u) = J(max{|u|,
√
α}).

After these preliminaries, we are able to compare our result for the relaxation in the nonlocal case with the local

one.

a) Part a) of Theorem 11 can be rephrased as follows: if u is large (in the form −
∫

Ω
u2 ≥ α

3 ) then I∗(u) = I(u).

Likewise, in the local case, if u is large (in the form |u| ≥
√
α a.e. in Ω) then J∗(u) = J(u). Observe that the

condition of “being large” in the local case is pointwise, while in the nonlocal case is an integral condition.

b) Part b) of Theorem 11, as well as Corollary 12, can be rephrased as follows. If u is small (in the form −
∫

Ω
u2 < α

3 )

then I∗(u) ≤ I(u) and, in fact, for a well defined bu ∈ (0, α4 ] we have I∗(u) = I
(
max

{
|u|,
√
bu
})

. We consider two

subcases.

b1) If bu = α
4 then, by Lemma 10, u is very small, in the form |u| ≤

√
α

2 a.e., so |u(x) − u(x′)| ≤
√
α for a.e.

(x, x′) ∈ Ω× Ω. Then the optimal Young measure is

νx =

(
1

2
− u(x)√

α

)
δ−

√
α
2

+

(
1

2
+
u(x)√
α

)
δ√

α
2

, x ∈ Ω

(this was shown in [11, Ex. 2], but it can also be quickly inferred from Theorem 9 and Example 13), so that

{y − y′ : y, y′ ∈ supp νx} = {−
√
α, 0,

√
α}. The analogy with the local case is that if |u| ≤

√
α a.e. then the

optimal Young measure is

νx =

(
1

2
− u(x)

2
√
α

)
δ−
√
α +

(
1

2
+
u(x)

2
√
α

)
δ√α, x ∈ Ω,

which is supported in the wells of f , whereas in the nonlocal case there appears another point in the set

{y − y′ : y, y′ ∈ supp νx} due to the nonlocal interactions.

b2) If bu < α
4 then, by Lemma 10, u2 > α

4 in a set of positive measure; at the same time, since −
∫

Ω
u2 < α

3

we also have that u2 < α
3 in a set of positive measure. Thus, u is neither large nor very small. Then, the

point bu ∈ (0, α4 ) is the threshold that distinguishes whether it is worthwhile to truncate u2. To be precise, if

u(x)2 ≥ bu then the optimal Young measure is νx = δu(x), while if u(x)2 < bu then the optimal Young measure

is (
1

2
− u(x)

2
√
bu

)
δ−
√
bu

+

(
1

2
+
u(x)

2
√
bu

)
δ√bu .

In either case, this amounts to the replacement of u2 with max{u2, bu}, hence I∗(u) = I
(
max

{
|u|,
√
bu
})

.

Similarly, in the local case, if u2 ≤ α in a set of positive measure and u2 > α in a set of positive measure, then

both cases of (49) appear.

To sum up, in both the local and nonlocal cases the relaxation is given by a truncation of u from above. The

main difference is that, in the local case, the level of truncation is a number independent of u, while, in the nonlocal

case, this level depends on u.

With the above explanation in mind, we can interpret the relaxation as the formation of microstructure as follows.

In the classical (local) case (see, e.g., [8, 28]), in the region where the optimal Young measure is a convex combination

of two Dirac deltas, a microstructure appears: the material develops finer and finer oscillations with gradients located

in the support of the two deltas. In our nonlocal case, Theorem 9 indicates that in Ω2 the value of u2 is small and a
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microstructure develops as a fine oscillation of the values of u between
√
bu and −

√
bu. Recall that

√
bu lies in (0,

√
α

2 ],

so the points at which u oscillates may not be exactly the half of the wells of f , because of the nonlocal interactions.
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[9] S. Bartels and M. Kruž́ık, An efficient approach to the numerical solution of rate-independent problems with nonconvex energies,

Multiscale Model. Simul., 9 (2011), pp. 1276–1300.

[10] J. C. Bellido and C. Mora-Corral, Existence for nonlocal variational problems in peridynamics, SIAM J. Math. Anal., 46 (2014),

pp. 890–916.

[11] , Lower semicontinuity and relaxation via Young measures for nonlocal variational problems and applications to peridynamics,

SIAM J. Math. Anal., 50 (2018), pp. 779–809.

[12] J. Bevan and P. Pedregal, A necessary and sufficient condition for the weak lower semicontinuity of one-dimensional non-local

variational integrals, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), pp. 701–708.

[13] J. Boulanger, P. Elbau, C. Pontow, and O. Scherzer, Non-local functionals for imaging, in Fixed-point algorithms for inverse

problems in science and engineering, vol. 49 of Springer Optim. Appl., Springer, New York, 2011, pp. 131–154.

[14] J. Bourgain, H. Brezis, and P. Mironescu, Another look at Sobolev spaces, in Optimal Control and Partial Differential Equations,

J. L. Menaldi, E. Rofman, and A. Sulem, eds., IOS Press, 2001, pp. 439–455.

[15] , Limiting embedding theorems for W s,p when s ↑ 1 and applications, J. Anal. Math., 87 (2002), pp. 77–101.

[16] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011.

[17] G. Buttazzo, Semicontinuity, relaxation and integral representation in the calculus of variations, vol. 207 of Pitman Research Notes

in Mathematics Series, Longman Scientific & Technical, Harlow, 1989.
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